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1. Introduction and Preliminaries 

In this paper the results established by the first two authors in [3], [4], 
and [5] are extended and generalized. 

After defining (in this section) classes of generalized Lucas numbers, 
{Vn(m)}9 governed by the positive integral parameter/??, the Fibonacci pseudo-
primes of the mth kind (/77-F.Psps.) are characterized in Section 2. A method 
for constructing them is discussed in Section 3, while some numerical results 
concerning these pseudoprimes are presented in Section 4. Finally, in Section 
5, some possible further investigations in this field are outlined. 

Let m be an arbitrary natural number. The generalized Lucas numbers Vn(m) 
(or simply Vn, if there is no fear of confusion) are defined (e.g., see [1] and 
[7]) by the second-order linear recurrence relation 

(1.1) Vn + 2 = mVn + l + Vn; V0 = 2, Vl = m. 
These numbers can also be expressed by means of the closed form expression 
(Binet's form) 

(1.2) Vn = an
m + B£, 

where 

!

Am = //??2 + 4 

am = (m + AJ/2 

3m = -l/am = (777 - AJ/2. 

It can be noted that, letting m = 1 in (1.1) and (1.2), the usual Lucas numbers 
Ln are obtained. 

The following fundamental property of the numbers Vn has been established 
([10], Eq. 108, p. 295): If n is prime, then for all m, 

(1.4) Vn(m) E m (mod n) . 

2. The Fibonacci Pseudoprimes of the mth kind: 
Definition and Some Numerical Aspects 

Rotkiewicz proved [15] that for each m, infinitely many odd composite num-
bers n satisfy (1.4). Odd composite n satisfying (1.4) are called Fibonacci 
pseudoprimes of the 77?th kind (/??-F.Psps.) . Write sk(m) for the kth one. Note 
that s1(l) = 705, Si(2) = 169, and sx(3) = 33. 

Some numerical aspects of the Fibonacci pseudoprimes of the 1st kind [s^(l) 
or 1-F.Psps.] have been investigated by the authors in previous papers [3], 
[4], and [5]. In particular, we found that all 1-F.Psps. below 108 are square-
free and, as expected, most of them are congruent to 1 both modulo 4 (81.3%) 
and modulo 10 (63.2%). A heuristic argument to explain the popularity of the 
classes 1 modulo 4 and 1 modulo 10 can be constructed (cf. [12], p. 1018). 

This work was carried out in the framework of an agreement between the Italian PT Administration 
and the Fondazione Ugo Bordoni. 
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Now, a question arises: "Do odd composites exist which are /??-F.Psps. for 
distinct values of 777?" The answer is the affirmative. 

We define as strong Fibonacci pseudoprimes of the Mth kind (M-sF.Psps.) all 
odd composites which are 777-F.Psps. for m = 1, 2, . .., M. Obviously, from this 
definition, it follows that 1-F.Psps. and 1-sF.Psps. coincide and an Af-sF.Psp. 
is an m-sF.Psp. (1 < m < M) as well. For information, the smallest 2-sF.Psp. 
is sli+(l) = 34,561, while the smallest 3-sF.Psp. is s89(l) = 1,034,881. Note 
that Theorem 6 of [4] states that a 1-F.Psp. is also a 4-F.Psp. so that all 
3-sF.Psps. are also 4-sF.Psps. 

A computer experiment was carried out [8] essentially to compile a table of 
1-F.Psps. up to 108 and to find A/-sF.Psps. (M > 1) below this bound. The 
results can be summarized as follows. There are 852 1-F.Psps. below 108 of 
which 48 are 2-sF.Psps. Four among these numbers are 4-sF.Psps. Among them, 
the rather exceptional number 

S802(D = 87,318,001 = 17 • 71 • 73 • 991 

is a 7-sF.Psp. and is, at the same time, a Carmichael number. Carmichael num-
bers are composite numbers n which satisfy the Fermat congruence Z?n_1 E 1 (mod 
ri) for each b relatively prime to n. Denoting the kth Carmichael number by C^, 
we found that 

S802Q) = Clhh. 

2.1 Tables of 1-F.Psps: A Brief Historical Note 

Earlier authors investigated the 1-F.Psps. and compiled tables of them up 
to certain bounds. To the best of our knowledge, apart from the sporadical 
discoveries of the first few 1-F.Psps. (e.g., see [11]; [5], Sec. 2), the 
oldest table (up to 555,200) containing, among other numbers, such pseudoprimes 
was compiled by Duparc [6] in 1955. In 1976 Yorinaga [17] compiled an 
analogous table to 707,000, and in 1983 Singmaster [16] published a table of 1-
F.Psps. to 100,000 (these numbers were defined as Lucas pseudoprimes by the 
author). A table of 1-F.Psps. up to 108 was given by the first two authors [5] 
in 1987. 

The second author extended this table up to 108 [8]. Copies of it will be 
sent, free of charge, upon request. 

_3. A Method To Obtain m-F.Psps. 

In this section we offer a method to obtain generating formulas for the 
/??-F.Psps. and, as a particular instance, we work out formulas for generating 
M-sF.Psps. (M = 1, 2, 3, 4, 5). The case M = 1 concerns, of course, numbers 
that are simply 1-F.Psps. Some numerical examples are also given. 

First, let us state the following propositions. 

Proposition 1: Let pi = 5k i ± 1 and q- = 5/z • ± 2 be odd rational primes. Let 

n = Y\ p*q* (a e {0, 1}) 

be an odd composite and A(n) = lcm(p. - 1, 2q • + 2)- . . 

I f n - 1 = 0 [mod A ( n ) ] , then Ln = 1 (mod ri) , t h a t i s , n i s a 1-F.Psp. 

Proposition 2: I f pi = Ski ± 1, q- = 8hj ± 3 , and n - 1 = 0 [mod A ( n ) ] , then n 
i s a 2 -F .Psp . 

Proposition 3: I f pi = \l>ki ± u (u = 1, 3 , 4 ) , q- = 13^- ± v (v = 2 , 5 , 6 ) , and 
n - 1 E 0 [mod A ( n ) ] , then n i s a 3 -F .Psp . 
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Proposition 4: If Pi = 29ki ± u (u = 1, 4, 5, 6, 9, 13), qd = 29k-j ± v (v = 2, 3, 
8, 10, 11, 12, 14), and n - 1 E 0 [mod A(ft)], then ft is a'5-F.Psp. 

Proof of Proposition 1: Since a2 and 3X, see (1.3), are integers (more precisely, 
unities) over the quadratic field k(/5) 9 we have (see [9], p. 222) 

(3.1) a ^ " 1 = ^i{~1 = 1 (mod Pi) 

and (from [9], p. 223) 

aJJ = Nal = a131 = -1 (mod q •) , 

6l J + i = m± = 61a1 = -1 (mod q.), 

NE, being the norm of the element £ of a generic quadratic field. 
If ft - 1 E 0 [mod A(ft)], then by (3.1) we can write 

(3.3) a{~1 = ap{Pi ~1} = (c^ ~l)Vi E 1 (mod p.) (t- e ]N = {0, 1, 2, ...}) 

and, analogously, 

(3.4) 3""1 = 1 (mod Pi). 

Under the same condition, by (3.2) we have 

(3.5) al = a:" w- = (a:J ) « = 1 (mod <? •) (rj e IN) 

and 

(3.6) 3i_1 E 1 (mod ^ . ) . 

Then, by (3.3)-(3.6) we obtain the congruences 

(3.7) a^ E ul (mod f\ p(:lqc!) (i.e., mod ri) 

and 

(3.8) g" E 32 (mod ft). 

Finally, by (3.7) and (3.8) we have 

Ln = a'l + ^l E aY + Bx = 1 (mod ft). Q.E.D. 

The proofs of Propositions 2, 3, and 4 are similar to that of Proposition 1 
and are omitted for brevity. 

3.1. Generating 1-F.Psps. 

The first two examples offered in this subsection follow directly from The-
orem 4 of [4] and give formulas for generating 1-F.Psps. which are, in 
addition, Carmichael numbers. The above mentioned theorem states that, if ft = 
PiP2* ••?<•' w i t n Pi a prime of the form 5k i ± 1 (1 < i < s) , is a Carmichael 
number, then n is also a 1-F.Psp. Note that Proposition 1 generalizes this 
theorem. 

Example 1: n = Plp2P^ 
In 1939 Chernick invented universal forms for generating Carmichael numbers 

[2]. In this paper we refer to Ore's book [10] where these formulas are 
reported. 

For constructing numbers ft of the above form (see [10], pp. 334-336), a 
suitable choice of the integral parameters Pj, Pz, and P3 [ibid.] is necessary. 
For instance, for Pl = 5, P2 = 1, and P3 = 6, we obtain 

(3.9) n(t) = (30t + 19)(150£ + 91)(180£ + 109) ( t e l ) . 

(3.2) 
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For a l l va lue s of t such t h a t a l l t h r e e f a c t o r s on the r i g h t - h a n d s i d e of (3 .9 ) 
a re prime ( n e c e s s a r i l y of the form 5k^ ± 1) , n(t) i s both a 1-F.Psp. and a 
Carmichael number. The s m a l l e s t among such numbers i s 

n(4) = 79,624,621 = s 7 6 6 ( l ) = C233. 

Example 2: n = PiP2p3p^ 
A formula yielding Carmichael numbers with four factors can be readily ob-

tained from ([13], p. 99): 

(3.10) n(t) = (30t + l)(60t + l)(90t + l)(180t + 1) (t e IN). 

For all values of £ such that all four factors on the right-hand side of (3.10) 
are prime (necessarily of the form 5k ̂  ± 1), n(t) is both a 1-F.Psp. and a Car-
michael number. The smallest among such numbers is 

n(9) = 192,739,365,541 = C\568. 

Example 3: n = pq^q2 

The following example is based on Proposition 1. Let p = 5k ± 1 and q- = 
5hj ± 2. It can be readily proved that, if n - 1 E 0 [mod A(n)], then any two 
of the three numbers p - 1, q -, + 1, and q~ + 1 have the same greatest common 
divisor d. Therefore, we can write 

(3.11) p - 1 = dP, ql + 1 = dQl9 q2 + 1 = dQ2 

or 
p - 1 = dP, 2qY + 2 = 2dQl9 2q2 + 2 = 2dQ2, 

where the numbers P, Q-, , and Q? are relatively prime in pairs. Consequently, 
we have 

A(n) = lcm(p - I, 2ql + 2, 2q2 + 2) = 2dPQlQ2 

and the sufficient condition for n to be a 1-F.Psp. (see Proposition 1) takes 
the form 

(3.12) n = pqxq2 = 1 (mod 2dPQ1Qz). 

Following Ore (see [10], pp. 335-336), let us replace the values of p, qi, and 
(72 o n the left-hand side of (3.12) by the corresponding values obtainable by 
(3.11). After some manipulations, omitted for brevity, we obtain the congru-
ence 

(3.13) d(QlQ2 - PQl - PQ2) + P - QY - Q2 E 0 (mod 2PQlQ2). 

After choosing suitable values for P, Q±9 and Q2, we find the smallest positive 
solution d$ to the congruence (3.13) so that, by (3.11), we can write 

( p = (dQ + 2tPQlQ2)P + 1, 

(3.14) ) q i = (dQ + 2tPQlQ2)Ql - 1, (t em) 

[q2 = (d0 + 2tPQlQ2)Q2 - 1. 

The choice of P, Q-, , and Q2 must yield a value of CZQ such that p = 5k ± 1 and 
qj = 5hj ±2 (j = 1, 2). For all values of t such that all three numbers p, 
q^9 and q2 are prime, n is a 1-F.Psp. (but, in general, it is not a Carmichael 
number). 

For instance, putting P = 5, QY = 1, and §2 = 2 in (3.13), we obtain J0= 14 
and, by (3.14), 

(3.15) n(t) = qlq2p = (20t + 13)(40t + 27)(100t +71) ( t e i ) . 
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For t < 100,000 t h e r e e x i s t 641 1-F.Psps . of the above form. The s m a l l e s t 
among them i s 

n(2) = s l l l t ( l ) == 1 ,536 ,841 , 

whi le the l a r g e s t i s 

n(99 ,992) = 79 ,982 ,429 ,286 ,524 ,601 ,241 . 
Many more formulas fo r g e n e r a t i n g 1-F.Psps . can be ob ta ined by means of 

o t h e r s u i t a b l e cho ices of P, Qx, and Q2 in ( 3 . 1 3 ) . As a f u r t h e r example, l e t -
t i n g P = 5 , Qx = 2 , and Q2 = 9, we ge t 

(3 .16) n(t) = (360* + 203) (900t + 511)(1620t + 9 1 7 ) ( t e i N ) . 

For t < 100,000 t h e r e e x i s t 1255 1-F.Psps . of t h i s form. The s m a l l e s t among 
them i s 

n(10) = 619 ,127 ,589 ,961 , 

while the largest is 

n(99,994) = 524,794,437,221,730,602,894,281. 

It must be noted that the sets containing the 1-F.Psps. of the forms (3.15) and 
(3.16) are disjoint. 

3.2 Generating m-F.Psps. (m > 1) 

Using the results established in Section 3.1 and Propositions 2-4, we can 
derive formulas for generating M-sF.Psps. (M = 2, 3, 4, 5). 

For example, let us consider expression (3.15) which generates 1-F.Psps. 
and impose that ql (and q2) and p are of the forms 8/2 ± 3 and 8k ± 1, respec-
tively (see Proposition 2). As a particular instance, if we impose that p E -1 
(mod 8 ) , then the congruence t E 0 (mod 2) must necessarily hold. For such 
values of t , the relations q, = 8H-, - 3 and q2 = 8h? + 3 turn out, so that the 
conditions of Proposition 2 are fulfilled (the congruence n - 1 E 0 [mod A(n)] 
holds in (3.15), by construction). 

Consequently, the numbers 

(3.17) n(t) = q±q2p = (20 • It + 13) (40 • It + 27) (100 • It + 71) 

= (40£ + 13)(80£ + 27)(200£ + 71) (t e IN) 

are 2-sF.Psps. for all values of t such that all three factors on the right-
hand side of (3.17) are prime. For t < 50,000, there exist 329 2-sF.Psps. of 
this form. The smallest (largest) among them and the smallest (largest) 1-
F.Psp. obtainable by (3.15) (for t < 100,000) obviously coincide. 

Analogously, by imposing the condition p E 3 (mod 13) (see Proposition 3) 
to (3.17), we obtain the numbers 

(3.18) n(t) = (520t + 93)(1040£ + 187)(2600t + 471) (t e IN), 

which, for all values of t such that all three factors are prime, are 3-
sF.Psps. and, consequently (cf. the end of the fourth paragraph in Section 2 ) , 
are also 4-sF.Psps. For t < 50,000 there exist 256 such numbers. The smallest 
among them is 

n(59) = 291,424,493,801,801, 

while the largest is 

n(49,976) = 175,508,922,783,506,139,921,721. 

Finally, by imposing the condition p E -4 (mod 29) (see Proposition 4) on 
(3.18), we obtain the numbers 
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(3.19) n(t) = (15,080t + 2173)(30,160* + 4347)(75,400t + 10,871) (t e IN) 

which, for all values of t such that all three factors are prime, are 5-sF.Psps. 
For t < 25,000 there exist 73 such numbers. The smallest among them is 

n(47) = 3,593,246,900,779,046,281, 

while the largest is 

n(24,791) = 522,508,952,184,890,040,253,388,041. 

It can be proved that numbers of the form (3.19) cannot be 6-F.Psps. 

4. Carmichael Numbers and Generalized Fibonacci Pseudoprimes: 
A Computer Experiment 

By means of this experiment, we sought numbers which are A/-sF.Psps. for 
comparatively large M. Since the largest value of M which we were aware of 
(namely, M = 1) pertains to a Carmichael number (namely, C24/4 = 87,318,001), we 
submitte d all numbers Ck < 25 • 10 9 to the test 

(4.1) Vc, (m) E m (mod Ck) 

for m = 1, 2, 3, ..., with the aid of an efficient computer algorithm which 
finds Vn reduced modulo n after [log2^] recursive calculations (cf. [14], pp. 
114 ff.). We could carry out this experiment by virtue of the courtesy of the 
editor of this journal who placed the table of Carmichael numbers compiled by 
S. Wagstaff (Purdue University) (cf. [12]) at our disposal. 

While this paper was being refereed, Professor Wilfrid Keller (Rechenzen-
trum der Universitaet Hamburg, FRG) kindly provided us with a table of all 
Ck < 1013 compiled by him. Submitting these numbers to the test (4.1) yielded 
the following update to the results obtained from Wagstafffs table. 

There exist 19,278 Carmichael numbers below 1013: 

3518 among them are 1-F.Psps. 3518 among them are 1-sF.Psps. 
2767 are 2-F.Psps. 599 are 2-sF.Psps. 
1735 are 3-F.Psps. 63 are 3-sF.Psps. 
3679 are 4-F.Psps. 63 are 4-sF.Psps. 
1104 are 5-F.Psps. 9 are 5-sF.Psps. 
1643 are 6-F.Psps. 8 are 6-sF.Psps. 
1258 are 7-F.Psps. 4 are 7-sF.Psps. 
1307 are 8-F.Psps. None of them is an 8-sF.Psp. 
1443 are 9-F.Psps. 
1324 are 10-F.Psps. 

The three additional 7-sF.Psps. we found are 

^1092 = 3,998,554,561 = 31 • 41 • 199 • 15,809, 
^3662 = 103,964,580,721 = 37 • 41 • 43 • 199 • 8009, 
C71 2 2 = 669,923,876,161 = 17 • 43 • 97 • 197 • 199 • 241. 

Since none of these numbers is an 8-sF.Psp., the record was not beaten! We 
offered [4] a prize of 50,000 Italian lire to the first person who would 
communicate to us an 8-sF.Psp. (below 1010 0). Of course, at least one of its 
factors was also requested. 

Currently, the smallest 8-sF.Psp. which we were able to construct [see Sec. 
5(iv)] is the 29-digit Carmichael number 

34,613,972,314,979,099,337,871,392,961 

(three factors). Actually, this number is an 11-sF.Psp. The first author won 
the prize. 
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Incidentally, we used the above mentioned algorithm also to submit all com-
posite Lucas numbers Lp (2 < p < 953, p either a prime or a power of 2) to the 
test 

(4.2) VLp(m) = m (mod Lp) 

for m = 2. We recall (see Corollaries 1 and 3 of [4]) that (4.2) holds for any 
p if 777 = 1. The result of this experiment led us to formulate the following 

Conjecture 1: No composite Lp is a 2-F.Psp. 

which implies the equivalent "Lp is prime iff (4.2) holds for 777 = 2." If Con-
jecture 1 were proved, then a powerful tool for finding very large Lucas primes 
would have been discovered. 

5. Future Work 

The authors intend to continue their study on the properties of 777-F.Psps. 
The principal aim of this further work is: 

(i) to find the smallest /M-sF.Psps. for 8 < M < 15; 
(ii) to evaluate the order of magnitude of the smallest /̂ /-sF.Psps. for 

M > 15; 
(iii) to find the smallest M-sF.Psps. (M > 2) (if any) which are the prod-

uct of exactly two distinct primes (the smallest 1-F.Psp. and 2-
sF.Psp. of this form are s5(l) = F19 = 4181 and s202(1) = 4,403,027, 
respectively). 

(iv) to establish formulas for generating M-sF.Psps. (M > 2) which are, 
at the same time, Carmichael numbers. 
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REPORT ON THE FOURTH INTERNATIONAL CONFERENCE ON 
FIBONACCI NUMBERS AND THEIR APPLICATIONS 

Herta T. Freitag 

Sponsored jointly by the Fibonacci Association and Wake Forest University, 
The Fourth International Conference on Fibonacci Numbers and Their Applications 
was held from July 30 to August 3, 1990. As the Conference took place at Wake 
Forest University, our foreign visitors especially gained a most enjoyable 
insight into one of America's delightful set-ups: a small, highly esteemed, 
liberal arts University, nestled at the outskirts of a faithfully restored 
eighteenth-century town, Winston-Salem, North Carolina. 

Immediately upon arrival it became clear to us how carefully and compe-
tently—under the leadership of the co-chairmen of the International Committee, 
A. F. Horadam (Australia) and A. N. Philippou (Cyprus), as well as of the co-
chairmen of the Local Committee, F. T. Howard and M. E. Waddill—our Conference 
had been planned and prepared. Special thanks must also go to G. E. Bergum, 
editor of our Fibonacci Quarterly, for arranging an outstanding program. 

There were about 50 participants, 40 of whom presented papers. Of these, 
two were women. From some 13 different lands they came; beside the U.S., the 
host country, Italy would have won the prize for maximum attendance, then 
Canada and Scotland, closely followed by Australia and Japan. 

Papers related to the Fibonacci numbers and their ramifications, and to 
recursive sequences and their generalizations, as well as those that analyzed 
and explained number relationships, were presented. Once again, as had been 
the case in our previous conferences, the diversity of the papers gave 
testimony to the fertility of Fibonacci-related mathematics, as well as to the 
fructification of ideas, brought about through our mutual but, at the same 
time, disparate interests. The interplay between theoretically oriented manu-
scripts and those that highlighted practical aspects was, again, conspicuous 
and fascinating. 

The Conference was held in the new Olin Physical Laboratory, which was 
accessible via overcoming several road hurdles that were necessitated by 
construction work across the campus. Although our hosts were most apologetic 
about this, we saw it as a sign of a vital, dynamic and, indeed, growing 
University. 

(Please turn to page 382) 
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