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BASIC FORMULAS

The Fibonacci numbers F, and the Lucas numbers [, satisfy

E%+2 =F . 1+t FE, FO = 0, Fl = 1;

L,o =1L, + L, Ly=2, L, = 1.

Also, o = (1 + V5)/2, 8 = (1 - V/5)/2, F, = (a" = 8")/V/5, and L, = o™ + B".

n

PROBLEMS PROPOSED IN THIS ISSUE
B-676 Proposed by Herta T. Freitag, Roanoke, VA

Let T, be the »n'™M triangular number n(n + 1)/2. Characterize the positive
integers »n such that

H

> 7.

i=1

T

1

B-677 Proposed by Herta T. Freitag, Roanoke, VA

Let 7, = n(n + 1)/2. Characterize the positive integers » with

B-678 Proposed by R. André-Jeannin, Sfax, Tunisia
Show that Ly, and Ly,;3 are never triangular numbers.
B-679 Proposed by R. André-Jeannin, Sfax, Tunisia

Express L,-oL,-1L,410,+p as a polynomial in L.
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B-680 Proposed by Russell Jay Hendel & Sandra A. Monteferrante,
Dowling College, Oakdale, NY

For an integer g > 0, define a sequence x;, ;5 ... by 5 = 0, z; =1, and
i x, .+, for m 2 0. Let d=(a?2 + 4)2 . TFor n = 2, what is the near-

est integer to dx,?

x = a

B-681 Proposed by H.-J. Seiffert, Berlin, Germany

Let n be a nonnegative integer, k = 2 an even integer, and r€{0,1,...,k -1}.
Show that

Fropen = Fryp - Fdn + F, (mod L, - 2).

SOLUTIONS

Golden Geometric Progressions

B-652 Proposed by Herta T. Freitag, Roanoke, VA
Let o = (1 + V5)/2,
n "
5,(n) = > ok and  5,(n) = Sk,
k=1 k=1

5,(n)
S, (n)

Determine m as a function of n such that - of, is a Fibonacci number.

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY

Both Sl(n) and Sz(n) are geometric series, whose sums are

ala” - 1) I o -1
31(7’2) = —?.L—-—‘*“ and SZ(YL) = y' ﬁ.
respectively. Hence, if B denotes (1 - /g)/Z, then

S1(n) _
Sy (n)

when m = n + 1.

2 no_ oqm-ly 4 n _ am-1
WF, = (e = F) = o’ (a o ) B(u B ) -7,
o -

Also solved by R. André-Jeannin, Paul S. Bruckman, L. Cseh, Piero
Filipponi, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the
proposer.

Pythagorean Triples

B-653 Proposed by Herta T. Freitag, Roanoke, VA

The sides of a triangle are g = F

o i 2n+3°
n a positive integer.

= I = 1
b E;+3An, and ¢ = F3F2+25%+1, with

g%) Is the triangle acute, right, or obtuse?
(ii) Express the area as a product of Fibonacci numbers.
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Solution by Paul S. Bruckman, Edmonds, WA

Note that
- _ 2 2 .
b = (Fn+2 + Fn+l)(Fn+2 - Fn+l) =B~ Fiis
¢ = 2Fn+2Fn+l;
_ 2 2
and as= Fn+2 + Fn+1'

We readily see that the given triangle is a Pythagorean (right) triangle, and
that it satisfies: a2 = b2 + ¢2, i.e., g is the hypotenuse.
If A is its area, then

1
4= Ebc = BBy 1F 2043

Also solved by L. Cseh, Piero Filipponi, L. Kuipers, Y. H. Harris Kwong,
Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer.

Infinite Series

B-654 Proposed by Alejandro Necochea, Pan American U., Edinburgh, TX

Sum the infinite series

Solution by Wray Brady, Axixic Jalisco, Mexico
f(z) ="2/(1 - - 22) is the generating function for the series
2: Foxk,
k=1 k
which series converges if |x| < 1/a. Thus,

f(1/2) + f(1/4) = 26/11.

the sum of the series is

Also solved by R. André-Jeannin, Paul S. Bruckman, L. Cseh, Russell Euler,
Piero Filipponi, Herta T. Freitag, Russell Jay Hendel, Joseph J. Kostal, L.

Kuipers, Y. H. Harris Kwong, B. S. Popov, H.-J. Seiffert, Sahib Singh, and
the proposer.

Farey Fractions

B-655 Proposed by L. Kuipers, Sierre, Switzerland

Prove that the ratio of integers x/y such that
F z F
2n % . 2n+l

F2n+2 Y F2n+3

and with smallest denominator y is (F,, + F, )/ (Fy, ., + F, . 3).

Solution by Sahib Singh, Clarion University, Clarion, PA
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ELEMENTARY PROBLEMS AND SOLUTIONS

Since

Foui Fon 1

_ - ,
Fones  Fonro  Font2Fon+3

therefore

Fou and Fonn
Fouio Fon+s

can be regarded as adjacent fractions of the Farey sequence of order Fj, .3 (see
Question 5 on page 173 of An Introduction to the Theory of Numbers by Ivan
Niven and H. S. Zuckerman, 4P ed. [New York: Wiley & Sons, 1980]). Hence, by
Theorem 6.4 (Ibid., page 171), the desired conclusion follows.

Also solved by R. André-Jeannin, Paul S. Bruckman, B. S. Popov, and the
proposer.

Closed Form
B-656 Proposed by Richard André-Jeannin, Sfax, Tunisia

Find a closed form for the sum
- k
5, = 2 wp" K,
k=0

where w, satisfies W, =pw,_ - qw,_, for » in {2, 3, ...}, with p and g non-
zero constants.

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY

It is a routine exercise to show that

aok + bRk
w, = ————,
a - B
where
o= (p+Vp2-4q)/2, B = (p - Vp2 - 4q)/2,
a =w, - Bw,, and b = Wy ~ Wy

The formula for w; leads to
n a n+l _ u”+1 b n+l _ pn+l

5 = X 0" % R

k=0 a - B p-o o - B p -8

Since o + B = p and aB = g, we have

aa(p”+1 _ u”+1) + bB(p”+1 _ 8n+l)

S =
" (¢ - B)aB

p"*l(aa + bB) - (aa"*? + bp"*2)  pttlwp - wuy
g(a = B) q '
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Also solved by Paul S. Bruckman, L. Cseh, Russell Euler, Piero Filipponi,
L. Kuipers, B. S. Popov, H.-J. Seiffert, and the proposer.

Disjoint Increasing Sequences

B-657 Proposed by Clark Kimberling, U. of Evansville, Evansville, IN

Let m be an integer and m 2 3. Prove that no two of the integers
k(mE@ +F ) fork=1,2, ..., m-1landn=20, 1, 2,

are equal. Here F_, = ].

1

Composite of solutions by Paul S. Bruckman, Edmonds, WA, and Philip L. Mana,
Albuquerque, NM

Assume that m 2 3; u, v € ¥ = {0, 1, ...};
(1 J» ke d{l, 2, ..., m~-1};
(2) JmF, + F,_1) = K(mF, + Fy_1).

We wish to show that j = k and u = v. It is easily seen that
mé, + F,_y > 0, for n 2 0.

Therefore, if u = v, then j = k as desired. Now there is no loss of generality
in assuming that 0 < u < v.
If w = 0, then v > 0 and (2) gives

g =k(mF, + F,_1) =2 m,

which contradicts (1). If u =1, then v > 1, and (2) gives
mg = k(mF, + F,_1).

Thus, m(j - kF,) = kF,_7 2 1. So
J - kF, 21 and j > kF, 2 kF,_1 =m(j - kF,) zm,

again contradicting (1).

Now we can assume that 2 < u < v. Also, we assume that gcd(j, k) = 1 since
this is the situation when J and k are divided by gecd(j, k) in (1). Then (2)
shows that

gl mF, + F,_1)
and we let mF, + F,_) = ¢j. This leads to mf, + F,_1 = ck and
c(kF, = JF,) (mF, + F,_)F, = (mF, + F,_)F,
= F, 0 F, - Byl = (_l)uFU—M'
Hence, ¢|F,_,, and we let d = F,_,/c. Now kF, - jF, = (-1)%d; therefore,
(3) JF, = kF, - (-1)"d = [(mFy, + Fy,_1)/clF, - (-1)"d. ‘
Since v 2 3 and v - u < v, we have F, > F,_ = ed. Hence, u = 2, and (3) gives
JgF, > mF, + F,_1)d - d = (mF, + )d - d = mdF,.

Thus, § > md 2 m. This contradiction and the previous work show that u = v and
J = k.

Also solved by Piero Filipponi and the proposer.

ok kokok
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