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BASIC FORMULAS 

The F ibonacc i numbers F and the Lucas numbers Ln s a t i s f y 

F ^o = F x l + F , Fn = 0, F, = 1; 
n + 2 n+ I n ' 0 1 ' 

L , n — Ju , i i Li % Lip, n+ 2 n+ I n ' 0 2 , L, 1. 

Also , a = (1 + / 5 ) / 2 , 3 = (1 - / 5 ) / 2 , Fn = (an - 3 n ) / / 5 , and Ln = an + Bn. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-676 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn be the nth t r i a n g u l a r number n(n + l ) / 2 . C h a r a c t e r i z e the p o s i t i v e 
i n t e g e r s n such t h a t 

T 
J- Y) i= 1 

B-677 Proposed by Herta T. Freitag, Roanoke, VA 

Let Tn = n(n + l ) / 2 . C h a r a c t e r i z e the p o s i t i v e i n t e g e r s n wi th 

i= 1 
EJ? 

B-678 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Show t h a t and L 4n + 3 a r e never t r i a n g u l a r numbers. 

B-679 Proposed by R. Andre-Jeannin, Sfax, Tunisia 

Express Ln^2
Ln-lLn+lLn+2 a s a polynomial in Ln. 
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B-680 Proposed by Russell Jay Hendel & Sandra A. Monteferrante, 
Bowling College, Oakdale, NY 

For an i n t e g e r a > 0, de f ine a sequence x Q , x, , . . . by x„ = 0, X-, = 1, and 
x ^0 = ax _,_, + x^ for ft > 0. Let d = (a 2 + 4 ) 1 / 2 . For n > 2, what i s the n e a r -

n+2 n +1 n 
e s t i n t e g e r to Jx n ? 
B-681 Proposed by H.-J. Seiffert, Berlin, Germany 

Let n be a nonnegat ive i n t e g e r , /c > 2 an even i n t e g e r , and p £ {0, 1, . . . 9k - 1} . 
Show t h a t 

Fkn + r E ^fc + r " *V>* + Fr (*od L^ - 2) . 

SOLUTIONS 

Golden Geometric P r o g r e s s i o n s 

B-652 Proposed by Herta T. Freitag, Roanoke, VA 

Let a = (1 + / 5 ) / 2 , 

n n 

SAn) = E a k a n d 5 2 ( n ) = Z a~fe-
k = l k=l 

Determine m as a func t ion of ft such t h a t - aFm i s a F ibonacc i number. 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

Both SAn) and SAn) a r e geometr ic s e r i e s , whose sums a re 

u(un - 1) 1 an - 1 
S\ (n) = and S9(n) = —- • —. 

1 a - 1 ^ or' a - 1 
r e s p e c t i v e l y . Hence, i f 3 denotes (1 - A ) / 2 , then 

£i(ft) „ a2(an - am~l) + ( a n - B'77"1) 
— uF = a(an - F ) = = F 
S2(n) m k m) a - 3 

when m = n + 1. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, L. Cseh, Piero 
Filipponi, L. Kuipers, Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the 
proposer. 

P y t h a g o r e a n T r ip l e s 

B-653 Proposed by Herta T. Freitag, Roanoke, VA 

The s i d e s of a t r i a n g l e a r e a = ^ 2 n + 3 , b = F 3F' a n d c = F,F F wi th 
ft a p o s i t i v e i n t e g e r . 

( i ) I s the t r i a n g l e a c u t e , r i g h t , or obtuse? 
( i i ) Express the a rea as a product of F ibonacc i numbers. 
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Solution by Paul S. Bruckman, Edmonds, WA 

Note that 

b = ^ + 2 + Fn + l^Fn + 2 ~ Fn+1^ = FL 2 " Fn + 1 ' 
° = 2Fn + 2Fn+l; 

and a = F2^_„ + F1 ^ , . 
n + z n +1 

We readily see that the given triangle is a Pythagorean (right) triangle, and 
that it satisfies: a1 = b2 + c1, i.e., a is the hypotenuse. 

If A is its area, then 

A = -be = Fn
Fn+lFn+2Fn + 3-

Also solved by L. Cseh, Piero Filipponi, L. Kuipers, Y. H. Harris Kwong, 
Bob Prielipp, H.-J. Seiffert, Sahib Singh, and the proposer. 

Infinite Series 

B-654 Proposed by Alejandro Necochea, Pan American U. , Edinburgh, TX 

Sum the infinite series 

* - ! 2lk k 

Solution by Wray Brady, Axixic Jalisco, Mexico 

f(x) = x/(1 - x - x2) is the generating function for the series 

k= l K 

which series converges if \x\ < I/a. Thus, the sum of the series is 

/(1/2) + /(1/4) = 26/11. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, L. Cseh, Russell Euler, 
Piero Filipponi, Herta T. Freitag, Russell Jay Hendel, Joseph J. Kostal, L. 
Kuipers, Y. H. Harris Kwong, B. S. Popov, H.-J. Seiffert, Sahib Singh, and 
the proposer. 

Farey Fractions 

B-655 Proposed by L. Kuipers, Sierre, Switzerland 

Prove that the ratio of integers x/y such that 
F2n ^ x ^ F2n+l 

F2n + 2 y F2n + 3 
and with smallest denominator y is (F0 + Fn ,i)/(Fn , 0 + Fn l Q ) , 

# v 2n 2n+ly' v z n + 2 2 n + 3 y 

Solution by Sahib Singh, Clarion University, Clarion, PA 
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Since 

F2n + l 
F2n + 3 

therefore 

F2n 

Fin 1 
F2n+2 F2n+2F2n+Z> 

_j F2n+l 

^2n+2 r 2n + 3 

can be regarded as adjacent fractions of the Farey sequence of order F2ri + 3 (see 

Question 5 on page 173 of An Introduction to the Theory of Numbers by Ivan 
Niven and H. S. Zuckerman, 4th ed. [New York: Wiley & Sons, 1980]). Hence, by 
Theorem 6.4 {Ibid., page 171), the desired conclusion follows. 

Also solved by R. Andre-Jeannin, Paul S. Bruckman, B. S. Popov, and the 
proposer. 

Closed Form 

B-656 Proposed by Richard Andre-Jeannin, Sfax, Tunisia 

Find a closed form for the sum 

sn =_Zw
kPn~k> 

k = 0 

where wn s a t i s f i e s wn = pwyi_l - qwn_^ for n i n {2, 3 , . . . }, w i th p and q non-
zero c o n s t a n t s . 

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY 

It is a routine exercise to show that 

aak + b$k 

wh = 

where 

* 

a = (p + /p2 - 4<?)/2, 3 = (p - /p2 - 4<?)/2, 

a = u1 - 3^0, and b = OLWQ - W-^. 

The formula for w^ leads to 
n a n+l _ a n + l h pn+l _ $n+l 

sn = y\ui v = + — • • 
n
 k=Qk a - 3 p - a a - 3 p - 3 

Since a + 3 = p and a3 = q> we have 

= aa(pn+l - a n + 1 ) + £ 3 ( p n + 1 - 3^+ 1) 
n ~ (a - 3)a3 

_ p n + 1 ( a a + ftg) - (aan + 2 + Z?3n+2) _ Pn + 1 ^ i " ^n+2 
<?(a - 3) q 
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Also solved by Paul S. Bruckman, L. Cseh, Russell Euler, Piero Filipponi, 
L. Kuipers, B. S. Popov, H.-J. Seiffert, and the proposer. 

Disjoint I n c r e a s i n g S e q u e n c e s 

B-657 Proposed by Clark Kimberling, U. of Evansville, Evansville, IN 

Let m be an i n t e g e r and m > 3 . Prove t h a t no two of the i n t e g e r s 

k(mFn + Fn_l) for k = 1, 2, . . . , 777 - 1 and n = 0, 1, 2, . . . 
a r e e q u a l . Here F_, = 1. 

Composite of solutions by Paul S. Bruckman, Edmonds, WA, and Philip L. Mana, 
Albuquerque, NM 

Assume t h a t m > 3; u, v e N = {0, 1, ...}; 

(1) j , k e { 1 , 2, . . . , m - 1} ; 
(2) j(mFu + F u _ i ) = k(mFv + Fv^). 

We wish to show that j = k and u = v. It is easily seen that 

mFn + Fn„l > 0, for n > 0. 

Therefore, if u = V, then j = k as desired. Now there is no loss of generality 
in assuming that 0 < u < V. 

If u = 0, then v > 0 and (2) gives 

j = k(mFv + iVi) ^ >", 

which contradicts (1). If u = 1, then y > 1, and (2) gives 

mj = k {mFv + Fv _ 1) . 

Thus, 777(j - fcFy) = kFv_l > 1. So 
j - kFv > 1 and j > fcFy > kFv„l = mU - kFv) > m, 

again contradicting (1). 
Now we can assume that 2 < u < V. Also, we assume that gcd(j, k) = 1 since 

this is the situation when j and k are divided by gcd(j, k) in (1). Then (2) 
shows that 

j\(mFv + Fv-0 

and we let mF v + Fv_l = cj. This leads to mFu + Fu-i = ck and 

c(kFv - jFu) = (mFu + Fu_l)Fv - (mFv + FV^)FU 

= Fu_lFv - FV.YFU = (-lfFy_w. 

Hence, c|Fy_M, and we let d = Fv.Jc. Now kFv - jFu = (-l)ud; therefore, 

(3) jFu = kFv - (-l)ud = [(mFu + Fu_x)lc\Fv - (-l)ud. 

Since V > 3 and v - u < V„ we have Fy > î y _ u = cd. Hence, u > 2, and (3) gives 

jFu > (mFu + Fu_l)d - d > (mFu + l)d - d = mdFu . 

Thus, j > md > m. This contradiction and the previous work show that u = V and 
3 = k. 

Also solved by Piero Filipponi and the proposer. 
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