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1. Introduction

In this paper we introduce the Vinogradov [8] inversion theorem for func-
tions defined on a finite partially ordered set. Our inversion theorem reduces
to that by Vinogradov in the case of positive integers. For material relating
to Vinogradov's inversion theorem, we refer to [2], [3], and [4].

As an example of our generalized Vinogradov inversion theorem we consider
an inversion theorem relating to arithmetical functions and regular convolu-
tions. As applications, we give expressions for certain restricted sums of
Fibonacci and Lucas numbers. Special cases of the applications can be found in

[4].

2. A Generalized Vinogradov Inversion Theorem

Let (P, C) be a locally finite partially ordered set. A complex-valued
function f on P x P is said to be an incidence function of (P, C) if f(z, y) =
0 unless x C y. We denote by I(C, P) the set of all incidence functions of (P,
C). The convolution of f, g € I(C, P) is defined by

Foq(xs y) = 2o flx, 2)g(z, y).
zCzCy
The inverse of f € I(C, P) is defined by

fort=flof=s,

where §(x, ) = 1 and §(x, y) = 0 if x # y. The inverse of ¢, defined by ¢ (x,
y) = 1 whenever x C y, is denoted by p and is called the Mobius function of
7, 9.

Now we are able to give our generalized Vinogradov inversion theorem. The
original Vinogradov inversion theorem is reproduced in the remark of Theorem 2
in Section 3.

Theorem 1: Suppose (P, C) and (P, <) are locally finite partially ordered
sets. Let f, be a complex-valued function of x € P and let d, be a function of
x € P into P. Then, for all g, b € P,

fo =2 ulas 2) 2. bf””’

<x<b acsa asx<
dz=a z2Cdy
where p is the Mobius function of (P, C).

a

Proof: We have

fo = fo8(as d) = 2 fo 2o was 2) = 2 ula, 2) 2. fo»
b a aczcCdy a a

a<x<b as<x< <z <o cz <x<ph
de.=a zcd,
which was required.
Remark: We note that Theorem 1 implies the classical inversion theorem for
incidence functions of (P, C) stating that if, for all a, b € P,
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gla, b) = 3 f(z, b),
aczch

then
fla, b) = 3 ula, a)g(z, b);
aczch
that is
() fla, b) = 2 wu(a, 8) Y, fly, b).
aczcCch ycb

z2C
In fact, let a, b € P with a C b. We assume £ C y = x < y for all x, y € P and
denote

{x € Pr acaecbhbl=1{xr;(=a), 29, ..., x,(=b)},

e € Pt as<x<bl ={y1(=a), yps «+v» y,(=b)}, m < n.
Then we take

dy, = a, dy, = Ty, «-.5 dy, =b, dy,,, =--- =dy, =c,

where ¢ € b, and f, = f(d;, b). (If there does not exist an element ¢ € P such
that ¢ ¢ b, then we consider the set P U {¢}.) 1In this case,

fo= be(dx’ b)'—'f(a, b)

as<x<bh asxs<
and de=a dz=a
Tula, &) 2, f, = 2 ula, 2) 2 f(d. b) = 2 u(a, 2) 2. f(y, b).
acz asg;b aca asx;b acsa acych
z2Cdy acd,

Thus, by Theorem 1, we arrive at (1).

3. Regular Arithmetical Convolutions

Let A be a mapping from the set IN of positive integers to the set of sub-
sets of IN such that, for each n € N, A(n) is a subset of the set of positive
divisors of n. Then the A-convolution of two arithmetical functions f and g is
defined by

(fog ) = 2, f(dgwn/d).
ded(n)

Narkiewicz [6] defined an A-convolution to be regular if:

(a) the set of arithmetical functions forms a commutative ring with unity
with respect to the ordinary addition and the A-convolution;

(b) the A-convolution of multiplicative functions is multiplicative;

(c) the function E, defined by E(n) = 1 for all n € IN, has an inverse g,
with respect to the A-convolution, and u,(n) = 0 or -1 whenever n is a
prime power.

The inverse of an arithmetical function f such that f(1) # 0 with respect to the
A-convolution is defined by

foaft=7"to, f=Ep
where Fg(l) = 1 and Eyx(n) = 0 for n > 1.
It can be proved (see [6]) that an A-convolution is regular if and only if

(1) A(m) = {de:d € A(m), e € A(n)} whenever (m, n) = 1,
(ii) for each prime power p2 > 1 there exists a divisor ¢ = £,(p2) of a
such that
A(p®) = {1, pt, p?t, ..., prt},
where rt = g, and

A(ptt) = {1, pt, p?t, ..., p*t}, 0< 1 < »r.
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For example, the Dirichlet convolution D, where D(n) is the set of all posi-
tive divisors of n, and the unitary convolution U, where

Uy = {d > 0:d|n, (d, n/d) = 1},

are regular (see [1]). 1In this paper we confine ourselves to regular convolu-
tions.

A positive integer n is said to be A-primitive if A(n) = {1, n}. The gen-
eralized M&bius function u, is the multiplicative function given by (see [6])

-1 if p% (>1) is A-primitive,
e = {7 T o
0 if p? is non-A-primitive.
For a positive integer k, we define
Ay(n) = {d > 0:dk € A(nk)}.

It is known [7] that the Aj-convolution is regular whenever the A-convolution
is regular. The symbol (a,b), , denotes the greatest kth  power divisor of «
which belongs to A(b). In particular, denote (a,b), , = (a,b),. Then

(as b)p = (a, b),

the greatest common divisor of a and b.
Let 4 be a regular arithmetical convolution. Then we define the relation C
on the set IN of positive integers by

mcn < meldn)

and denote by IN; the resulting locally finite partially ordered set.
Let f be an arithmetical function, that is, a complex-valued function on IN.
Then we can associate with f an incidence function f' of N, defined by

fn/m)y if m € A(n),
0 if m & A(n).
The mapping f » f' is one-one and
(2) (f'og"(my n) = (fo,g)" (my n)
(see [5], Ch. 7). Plainly
(Eg) "(my n) = &§(my, n), E'(m, n) = ¢(m, n).
Therefore, by (2),

f(m, n) ={

1]

(uy) "(ms m) = u(m, n).

Now we are in a position to state Theorem 1 for regular convolutions. Let-
ting < be the natural ordering on IN, we can write

Theorem 2: Let f; be a complex-valued function of 7 € IN and let d; be a func-
tion of 7 € IN into IN. Then, for all n € IN,

n n

,E: fi =2 Hy (D) 2 Iy

7=1 dz1 =1

d; =1 de€a(dy)

Remark: 1f A = D in Theorem 2, we obtain the original Vinogradov inversion

theorem.

Corollary: Let f; be a complex-valued function of ¢ € N. Then
n

>

i=1fﬁ'

a*li

Proof: Replace A by Ay and take d; = ((Z, nk)a, k)% in Theorem 2. Since d€
Ar(((Z, nk)y, k)Y %) if and only if d € Ay (), d*|i, we obtain the Corollary.
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4. Applications to Fibonacci and Lucas Numbers

Let F; be the ¢ Fibonacci number, that is, Fy =1, Fp =1, F, = F,_| + F,_
(n 2 3), and let L; be the 7th Lucas number, that is, L; =1, [,=3, L, =L

Ln_z (ﬂ > 3).

2
+

n n-1

Theorem 3: Let A be a regular convolution and k¥ € IN. Then, for each »n € IN,

k
n F_ - (-D¥F . -
dx+ dk md* dk
(3) F, = (D : ,
,;;1 ‘ 4;2200 A Dye = (D -1
(Tyn), =1 = G
dk 7k
(4 S Le ¥ g aimteat T O b n Bac ¥ 2CLF
s = u.n_ 5
e 7 A,

1 ded, ) Lg = (14 -1
where m = [n/dk], the greatest integer in n/dX.

Proof: Plainly,

_ii F,o= 2 F .

=1 1<7<n/d* wd
akli
Then, using the formulas
1
F, = 2 = 67, Ly = o+ 87

where
o=t +/5, 8=20-/5
2 ’ 2 ’
we obtain, after some computations,

7

ax _
- (_1) Fmdk Ebk

iF _ Frakyax
i1t Ly - (DY -1
ki qk
Thus, applying the Corollary of Theorem 2, we get (3). The proof of (4) goes
through in a manner similar to that of (3).

Corollary: Let A be a regular convolution. Then, for each n € IN,

d
i F.o= Z . /d)Fn-Fd - (-1) Fn B Fd
. ;T AN >
” ’;51_1 Yodeam Ls- -4 -1
i,n), =
) L. = Z: H (d)Ln+d — (—1)dLn ~La ¥ 2D
. ;= A 7 .
G, =1 T acin Ly - (D% -1
Theorem 4: Let A be a regular convolution and k € N. Then, for each n € IN,
dk
7 Fo . = (-1)*F .. - F
‘d*{ a]/-. ‘dr\ d){
(5) X =Eu, - X u (DT = -1,
@ ac o bge = (D -1
n
(6) 2 I
=
. 4y, o _ dk 7 _ dk
_(g’”):.k>l < (d)LmdudK (D% Lge = Lge + 2(-1) )
- +2 7 . D - 3
! d€ 4y (n) Ax Ly = (-1)&" -1

where m = [n/dk].
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Proof: We have
14 7 n

=1 =} i=1
(i, n94,x > 1 (2,n9, , =1
Therefore, applying (3) and the identity

n
2 F;

i=1

we obtain (5). Similarly, applying (4) and the identity

Fn+2 -1,

n
2 Dp =Ly = 3,

=1

we get (6).
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