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Suppose that the first several terms of a sequence are given, then it is 
not so easy to predict the asymptotic behavior of this sequence. But once we 
know that this given sequence is a linear recurrence sequence, we can determine 
the asymptotic behavior through its recurrence formula. 

Indeed, John R. Burke and William A. Webb [1] considered real linear recur-
rence sequences iun}™=Q of order d defined by 

(1) un + d= ad.lun^d_l + ad._2un+d_2 + ... + aQun for n > 0, 

where a*, a^> ..., <2J_I are real numbers, with its corresponding characteristic 
equation: 

(2) p(x) = xd - ad_lxd~l - ... - oiy£ - aQ = 0. 

They obtained a criterion for the asymptotic positiveness of linear recurrence 
sequences (1) if the corresponding characteristic equation has distinct roots. 
Here we call a sequence {un}™=0 asymptotically positive if there exists a natu-
ral number UQ such that 

un > 0 for all n > TIQ . 

In particular, if the above T-ZQ is equal to zero, we call this sequence (wn}^=0 

totally positive. 
In this note, we shall give a criterion of asymptotic positiveness of real 

linear recurrence sequences {un}™=0 (1) of order d, when their characteristic 
equations have multiple roots. 

Let us recall a general representation formula for un. We assume that the 
corresponding characteristic equation (2) of {wn}~=0 has roots A^, A2J . .., Ap 
with corresponding multiplicities /??]_, m2, . . . , rrip. Then there exist polyno-
mials b\, Z?2> .-.» bp with degree b^ < mi - 1 for i = 1, 2, ..., p, where the 
coefficients of polynomials b\9 b^* . . . , bp depend only on the roots of the 
characteristic equation (2) and the initial values of this recurrence sequence. 
Then, we have, for all n > 0, 

(3) un = bi(n)\i + b1{n)Xn
1 + ••• + bp(n)\p. 

The detailed discussion of this representation (3) can be found, for exam-
ple, in W^adys^aw Narkiewicz [4] or Alecksei I. Markusevic [2]. 

Without loss of generality, we arrange the roots AT, A25 •••> Ap according 
to their moduli as 

\\l\ > IA2| ^ ••• ̂  IApI -
Suppose first that X2 is the complex conjugate of Al5 Xi is not real, and 

(4) \xlI = |A2| > |A3| > •.• > \ x p \. 
We assume further that the sum of the first two terms of (3), denoted by 

(5) vn = Z?!(n)Xi + b2(n)Xn
1, 
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does not vanish for i n f i n i t e l y many n. Then 

(6) un = vn + o(vn) 

holds for all sufficiently large n (see Nagasaka, Kanemitsu, & Shine [3]). 
Since {un}™=Q is a real sequence, we get 

b2(n) = b1(n) 
and 

vn = byMx'l + b2{n)\n
2 = bi(n)(re2l[iQ)n + ^ > ) ( r e - ^ ^ ) « 

= bl(n)rne2llinQ + (bl(n)rne2l]ine ) 

= 2 Re{Z?1(n)p^27T7'"-e }, 

where X]_ = re2ljzd and 0 i s not a multiple of IT (since A]_ i s not r e a l ) . Now, if 
we write 

&!<«) = aknk + ak_^~l + ••• + cQ, 

where OQ, cl5 ..., ck are complex numbers determined by the roots Aj, A2, ..., Ap 
and initial values u0, w1? ..., w^-i with nonzero cfc , k < mi - 1. Then 

vw = 2 Re(ekrcfcrwe27,i"e) + o{nkvn) 

= 2nkrn Re(ck)cos(2i\nQ) + o{nkrn) for large n. 

Since 6 is not a multiple of i\ , yrz takes negative values for infinitely 
many n , by applying the same argument as in the proof of Theorem 1 in Burke & 
Webb [1]. Hence, by (6), the original linear recurrence sequence {un} is not 
asymptotically positive for this case. Summarizing the above discussion, we 
have 

Theorem 1: Suppose that the roots X\, X2, •••> Ap of the characteristic equa-
tion of {un}n=Q satisfy (4) and that A^ and A2 are complex conjugates of each 
other and are not real. Assume that vn does not vanish for infinitely many n, 
then the linear recurrence sequence {unY° Q is not asymptotically positive. 

Secondly, we assume again the relation (4) with real X\ and X2, that is, 
-A2 = A]_. We denote the leading coefficients of the polynomials bi(n) + b2(n) 
and b\{n) - b2(n) by A and B, respectively, and assume further that AB * 0 for 
all sufficiently large n. Say that b\{ji) + b2(n) has degree k, b\(n) - b2(n) 
has degree I. Then (8) holds for all sufficiently large n. 

Hence, we have that, for all sufficiently large even n, 

(7) un = Ankx\ + o(nkAi) 

and, for all sufficiently large odd n, we get 

(8) un = Bnlx\ + o(nlx\). 

Thus, we obtain 

Theorem 2: Suppose that the roots A]., X2, . .., Ap of the characteristic equa-
tion of {un}™=0 satisfy (4) and 0 < Xi = -X2 that are real. Assume further 
that the leading coefficients A and B of the polynomials bi(n) + b2{n) and 
b\(ji) - b2(n) are positive. Then {un}™=0 is asymptotically positive. 

We now leave assumption (4). Then, we have either 

(9) JXJI = |A2| = IA3I = ••• = \\j\ > \\j+l\ > ... > \XP|, 
for some j > 2, or 

(10) \X1\ > |A2| > ... > |AP| . 

First, let us consider the case (10). From the fact that the coefficients 
of the characteristic equation a0, a1? ..., ad_i are all real, Ax must be real. 
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Also, if b\(ri) is not identically zero, we get 

(11) un = CnmX\ + o(nmX\), 

where C is the leading coefficient of the polynomial b\(n) of degree m < m\ - 1. 
Thus, we obtain 

Theorem 3: Suppose that the roots A1? A2, • ••> Xp of the characteristic equa-
tion of {un}™=0 satisfy (10). Assume further that the polynomial b\{jt) is not 
identically zero, that X\ is positive, and that the leading coefficient C of 
b\(ji) is also positive. Then the linear recurrence sequence {un}™=0 is asymp-
totically positive. 

For the remaining case (9), we need to divide into the following three sub-
cases : 

(i) j is even, all A£ are not real for £ = 1, 2, . . . , j and X2i is the com-
plex conjugate of X2i-\ for i = 1, 2, ..., j/2. We assume further that b\(ri) > 
b2(n), ..., bp(n) do not vanish for all n > TIQ. 

Then, applying Theorem 1, {un}™=0 is not asymptotically positive. 

(ii) j is even, 0 < Xi = -A2 are real, all other Xz for I = 3, 4, . .., j are 
not real, and X2^ is the complex conjugate of X^i-\ for i = 2, 3, ..., j/2. We 
suppose again that b\{yi) > b2(n) > • ••? bj (n) do not vanish for all n > n§. 

Then {un}n=o is asymptotically positive if the leading coefficients A, B of 
bi(n) + b2(n) and b\(ri) - b2(n), respectively, are both positive for all suffi-
ciently large n and either 

min{deg(Z?1 (n) + ^(n)), deg(2^(n) - b2(n))} is greater than 

max (deg(2 Re(b2i-i(n)))} 
£ = 2 , 3, ..., j / 2 

or 

min04, 5) - 1 is greater than all the leading coefficients of 
2 Re(b2i-i(n)) for which 

min{deg(Z?1(n) + b2 (n)), deg(^x (n) - 2?2(n))} 

= deg{2 Re(Z?2i-i(n))} for i = 2, 3, ..., j/2. 
(iii) j is odd, 0 < X]_ is real, all other A£ are not real for I = 2, 3, . . . , j 
and A2i +1 is the complex conjugate of A2^ for i = 1, 2, ..., [j/2]. 

Then {un}n=Q is asymptotically positive if the leading coefficient C of 
b\{n) is positive and either deg(Z?]_(n)) is greater than 

max .{deg(2 Re(£2i(n)))} 
% = ±, 2, . . . , L J / 2 J 

or C - 1 is greater than all the leading coefficients of 2 Re(2?27;(n)) for which 

deg(Z?1(n)) = deg(2 Re(b2i(n))) fort = 1, 2, ..., [j/2]. 
We assume always the nonvanishing property of all bl{n) for £=1, 2,..., j , 

for the case (9). If some of the bl(n) are identically zero, say by_{n) , then we 
simply ignore these terms bk(n)X^ , and it is sufficient to trace the above 
discussion. 

Finally, we give explicit conditions for a real linear recurrence sequence 
of order 2 or of order 3 to be asymptotically positive. 

We denote {sn}™=0 a linear recurrence sequence of order 2 with recurrence 
formula sn+2 = a\Sn+i + a$sn. First, we assume that its corresponding charac-
teristic equation of degree 2 has only one real double root a * 0. Then, a\ = 
2a and CCQ = -a2 and the nth term sn can be represented by 
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sn = (pxn + p2)an for n > 0. 
By solving the system of equations 

\sl = (Pi + P2^a> 
we obtain 

px = (sx - sQa)/a. 

Applying the discussion of Theorem 3 above, we have 

Theorem 4: Suppose the characteristic equation of a linear recurrence sequence 
{sn}^=0

 n a s only one real double nonzero root a. Sequence {sn}™=0 is asymptot-
ically positive if and only if a > 0 and either si > SQOI or s0 > 0 and si = SQOL. 

Corollary 4.1: Under the same assumption as in Theorem 4, the sequence {sn}™=0 
is asymptotically positive if and only if a} > 0 and either 2si > CLISQ or s0 > 0 
and 2si = a^SQ. 

By using the relation between a and the a^'s, this Corollary follows imme-
diately from Theorem 4. 

Let us recall the case where the characteristic equation of a linear recur-
rence sequence {sn}™=Q, that is, 

(12) X2 - aY\ - a0 = 0, 

has two distinct roots. 

Theorem 5: Let D = a? + 4aQ be the discriminant of equation (12) of degree 2. 
Suppose the characteristic equation of {sn}n=o has two distinct roots 04 and 
a2. This sequence {sn}™=o is asymptotically positive if and only if VD is real 
and one of the following four conditions is satisfied: 

(i) al = 0, s0 > 0, sl > 0. 

(ii) al > 0, 2sl > (ax - T/D)SQ. 

(iii) ax > 0, 2sl = (a1 - /D)sQ3 SQ > 0, aQ < 0. 

(iv) a1 < 0, 2s1 = (al + /D)sQ9 SQ > 0, aQ > 0. 

Proof: Suppose first that VD is purely imaginary. Then a2 is the complex con-
jugate of 04 and the nth term sn can be represented by 

n , — — n Sn = C^i + C\&i J 

since {sn}^=o is a sequence of real numbers. We now apply Theorem 1. 
For {sn}n=o> Vn, as defined by (5), is identical to sn. The nonvanishing 

assumption of sn = Vn is naturally satisfied, since otherwise {sn}™=o becomes 
the sequence of 0!s which is not asymptotically positive. Hence, all 
assumptions of Theorem 1 are fulfilled. Thus, for purely imaginary JD , isn}™=Q 
is not asymptotically positive by Theorem 1. 

Now we get necessarily that if JD is positive real then 04 > a2. Condition 
(i) is already treated in the proof of Theorem 3 [1]. For the remaining cases, 
(ii), (iii), and (iv), we use a representation formula of sn , 

with 

O -J OC -I I C n d n ) 

c 1 — , Co — 
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In addition to case (ii) treated already in Theorem 3 [1], we are forced to add 
condition (iii) , since c, may be zero. If e, = 0 with positive a-^, then 

3 0̂  1 °1 n 
a2. 

al ~ a2 Thus, we require that SQOU - s, > 0 and a^ > 0, from which we deduce uQ > 0 and 
aQ < 0. 

If a-, < 0 with real positive /D, then a2 < 0 and |aj_| < j a,2. | - F o r asymp-
totic positiveness of {sn}^=0, we require that o^ = 0, o^ > 0, and a1 > 0. Re-
writing these three conditions, we obtain (iv). 

The sufficiency part of Theorem 5 is almost immediate from the representa-
tion formula of sn. Q.E.D. 

Remark: Combining Theorems 4 and 5, we obtain a complete characterization for 
asymptotic positiveness of linear recurrence sequences {sn}°^=Q of order 2 in 
terms only of the coefficients of the recurrence formula and of the initial 
values. 

Now we consider a linear recurrence sequence {tn}~=0 of order 3 with recur-
rence relation 

tn+3 = a2^n+2 + a\tn+i + a$tn. 

Burke & Webb [1] give a sufficient condition for {tn}™=0 to be asymptotically 
positive. 

Theorem 6: Suppose the characteristic equation of {tn}™=0 has distinct roots 
and that they satisfy either a.i, a2» 

(13) 

or 

If 04 > 
ten as 

a 3 and tha 

1 al 1 > 1a2 

lall = la2 
0 and cl > 

I > I ot3 I and a 2 is the complex conjugate of a^. 

0, then {tn}™=0 is asymptotically positive where tn is writ-

(14) tn = C-^a^ + Cpa2 + c3aQ« 
Keeping the assumption of distinct roots, Theorem 6 does not cover the fol-

lowing cases: 

(i) 04 = -0L2 with real oq. 

(ii) 0L2 is the complex conjugate of 04 and the roots satisfy 

lall = la2l = I OL 3 I • 
Case (i) can be treated using Theorem 2; however, (ii) is a special case of (9) 
which brings certain difficulty to determine {tn}n=0 to be asymptotically posi-
tive. 

Burke & Webb give another elegant sufficient condition for {tn}^=0 to be 
asymptotically positive as Theorem 2 in [1], but they implicitly assume (13) 
and also that c\ * 0 in (14). In order to obtain the necessary and sufficient 
conditions for {tn}n=o to be asymptotically positive as in Theorem 5 with the 
assumption of distinct roots, there are too many cases split according to the 
vanishingness of the coefficients in (14). We can treat all of these cases; 
however, we shall give necessary and sufficient conditions for itn}^=Q to be 
asymptotically positive only when the characteristic equation has multiple 
roots, since originally we planned to generalize the results of Burke & Webb 
[1] for multiple roots. 
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Thus, we assume that the characteristic equation of {tn}™=0 of order 3 has 
multiple roots. In order to determine conditions for {tn}„=0 to be asymptoti-
cally positive, Theorem 3 assumes that it is sufficient to consider only the 
following two cases: 

(I) The corresponding characteristic equation of degree 3 has only one triple 
real root 3. 

(II) The corresponding characteristic equation of degree 3 has one double real 
root 3 ^ 0 and another real root y with |ft| ̂  IYI• 

Let us treat case (I). The nth term tn is represented by 

tn = (q-^n2 + q2n + qY)$n for n > 0. 

Solving the system of equations 

- i = (Qi + q2
 + ^ 3 ) 3 

t2 = ( 4 ^ + 2q2 + <?3)32, 

we get 

t9 - It, + tn3 2 -t^ + 4^,3 - 3tn32 

q = -A L _ y_f q = _£ L _ y _ , q = t 

Thus j in case (I), the sequence {tn}n=o is asymptotically positive if and 
only if 3 > 0 and either 

(15) t z - 2tx3 + t 03 2 > 0 

or 

(16) t2 ~ 2tx3 + t03 2 = 0 and -t2 + 4^3 - 3t032 > 0 

or 

(17) t2 - 2tiB + t03 2 = -t 2 + 4^3 - 3t032 = 0 and £0 > 0. 

Condition (16) can be reduced to 

(18) ti > t03 and t2 = 2ti& - tQ$2. 

Condition (17) can also be reduced to 

(19) t2 = t032, ti = tQ$, and tQ > 0. 

Summarizing the above argument, we have 

Theorem 7: Let {tnYn=Q be a linear recurrence sequence of order 3. Suppose 
the characteristic equation of {tnYn=Q has only one triple real root 3. The 
sequence {tn}yl=Q is asymptotically positive if and only if aQ > 0, cu > 0, and 
one of the following three conditions holds: 

(i) 3t2 - 2a2tl - a1tQ > 0. 

(ii) 3t2 - 2a2ti~aitQ = 0 and 3t2 - ka2t\ - 3a\t$ < 0. 

(iii) 3t2 - 2a2ti - a^t^ = 3t2 - ka2ti - 3a.it§ = 0 and £0 > 0. 

These three conditions are mentioned in (15), (18), and (19) above. We 
need only rewrite them as the relations 

a2 = 33, al = -332> aQ = 33, 

since 3 is the triple multiple root of the characteristic equation 

A3 - a2X2-alX - aQ = 0. Q.E.D. 
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For case (II), the nth term tn is represented by 

tn = (qYn + q2)$n + hyn. 

Thus, we have 

( 3 2 + 2 Y
2 ) t 0 - 2Ui + t2 y (3 + 2y ) t 0 - (3 + y ) t i + t2 

and 

?Z = 

<?2 

<?1 (3 - Y ) 2 ' Ll 3(3 - Y) 

- Y ( 2 3 + Y H O + 23t x - t2 

(3 - Y ) : 

We now divide into two subcases: 

(Ha) | 3.| > |Y| • 

In this case, the sequence {tn}n==0 is asymptotically positive if and only 
if 3 > 0 and either ql > 0 or q1 = 0 and qz > 0 or ql = q2 = 0, h > 0, and 
Y > 0. 

(lib) |3| = |Y| • 

In this case, the sequence {tn}n = 0 is asymptotically positive if and only 
if either 3 > 0 and ql > 0 o r 3 > 0 , j > 0, <?I = °  > q2 + h > 0, a n d q2 > ^ o r 

3 < 0, q1 = 0, q2 + h > 0, and q2 < h or qx = q2 = 0, h > 0, and p > 0. 

Remark: For an arbitrary given linear recurrence sequence {tn}^=0, we can give 
explicit conditions for {tn}™=0 to be asymptotically positive when the charac-
teristic equation has one real double root 3 and another real root Y with Y in 
terms of only the coefficients of the recurrence formula and of the initial 
values as in Theorem 6, since we have a2 = 23+Y> &\ = "23Y~ 32> a n d aQ = 32Y-
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