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Introduction 

Let c and n be natural numbers. Let Fn denote the nth Fibonacci number, 
that Is Fi = F2 = 1> Fn = Fn_1 + Fn„2 f° r n - 3. Consider the equation 

(*)' Fn = ox1. 

In [1], Cohn solved (*) for c = 1, 2. In [9], we found all solutions of 
O ) such that <? is prime and either o = 3 (mod 4) or c < 10,000. Harborth & 
Kemnitz [4] have asked for solutions of (&) for composite values of o. 
Clearly, it suffices to consider only squarefree values of c. 

If c < 1000, then c has at most three distinct odd prime factors. There-
fore c = kp where p is prime and k = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 
21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39, 42, 51, 55, 65, 66, or 70. In 
this paper, we solve (*) for each of the above values of c. In the cases k = 
2, 13, 26, 34, our results are valid only for p < 10,000; in the other cases, 
there are no restrictions on p. These results are listed in Table 1. 
Combining these new results with those from [1] and [9], we obtain all 
solutions of (*) such that 1 < a < 1000. We list these solutions in Table 2. 

Preliminaries 

Let p denote a prime, 777 a natural number. Let Ln denote the nth Lucas num-
ber, that is Li = 1, Lz = 3, Ln = Ln_]_ + Ln_2 for n > 3. Let op(n) = k if pk\\n, 
where k > 0. Let {alp) denote the Legendre symbol. Let z(ri) = m±n{m:n \Fm}. 
If p is odd and 2|g(p), let y(p) = %s(p). 

(1) Fn = x2 iff n = 1, 2, or 12. 

(2) Fn = 2x2 iff n = 3 or 6. 

(3) If p E 3 (mod 4), then Fn = px2 iff (n, p, x2) = (4, 3, 1)-

(4) If p = 1 (mod 4) and p < 10,000, then Fn = px2 iff 
(n, p) = (5, 5), (7, 13), (11, 89), (13, 233), (17,1597), or (25,3001). 

(5) Fn * 6x2. (6) Ln = x2 iff n = 1 or 3. 

(7) Ln = 2x2 iff n = 6. (8) Ln = 3x2 iff n = 2. 

(9) Ln * 6x2. (10) L„ = lx2 iff n = 4. 

(11) Ln = llx2 iff n = 5. (12) Ln = 19x2 iff n = 9 

(13) Ln = 29J;2 iff n = 7. (14) H n = 7 (mod 8) if 3Jn. 

(15) 5\Ln, l3\Ln, \l\Ln for all n. 

(16) If m > 2, then m\Fn iff s(m)|n. 

(18) If w > 3, then Fm\Fn iff /w|n. 
(2 if 3|n, 

(19) (Fn, Ln) ={ 
I 1 if 3{n. 
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(20) I f m > 2 , then Lm\Ln i f f n/m i s odd. 

(21) F3n/Fn = L2 - ( - 1 ) " . (22) L3n/Ln = L2
n - 3 ( - l ) * . 

(23) F5n/5Fn = 5F^ + 5(-l)nF2 + 1. (24) 5\F3n/Fn. 

(25) L 5 n / L n = L^ - 5 ( - l ) " L * + 5. 
( 1 i f p = ±1 (mod 5 ) , 

(26) s ( p ) | ( p " e) where e = < - l i f p E ±2 (mod 5 ) , 
I 0 if p = 5. 

(27) ( ^ , F„) = Fimtn). (28) (F„, F ^ / F n ) | ^ . 
(29) ( F n , F s ^ / 5 ^ ) = 1. (30) Fhn + l + 2 = F2n^L2n + z . 

(31) A n - l + 2 = i?2n+1^2n-2- (32) (Fm , Lm±n) \Ln. 
(33) x2 - 5y2 = -4 iff x = Ln, y = Fn for some odd n. 

(34) I f p i s odd, p\Fm, and p j a , then op(Fpkam/Fn) = k. 

(35) 2|F3w/Fw i f f 3J777. (36) 2 | L n i f f 3 | n . 

(37) 3 |L n i f f n E 2 (mod 4) (38) 4|-L„ i f f n E 3 (mod 6 ) . 
(5 i f 5 In, 0 

(39) ( F n , ^ 5 n / F n ) = <! _ (40) L2n = L2
n - 2{-\)n. 

u i f 5{n. 
(41) I f /c i s odd, then (£„» L^n/Ln)\k. 

(2 i f n E 3 (mod 6 ) , 
(42) o 2 (^n) = \ l ±f n E 0 (mod 6 ) , 

(O o t h e r w i s e . 
(43) I f p i s odd, then p\Ln i f f n = ky(p) , /c odd. 

(44) F 7 m /F w = 1 2 5 ^ + 175(-l)mF* + 7 0 ^ + 1{-I)m . 

(45) 3 | ^ i f f 4 |w. 
Remarks: (6), (7), (1), and (2) are Theorems 1 through 4 in [1]. (3) and 
(4) are Corollary 1 and Theorem 3 in [9], respectively. (5) and (9) follow 
from Lemmas 1 and 2 in [20], respectively. (8) and (10) are established in 
[2], (11) through (13) in [11]. (32) is Theorem 1 in [7]. (28) is Lemma 16 in 
[3], while (34) follows from Theorem 2 in [3]. (41) follows from Theorem 4 in 
[8]. (17), (18), (20), and (27) are J7, Theorem III, Theorem V, and Theorem II 
in [5], respectively. (40) follows from _Z"15 and J18 in [5]. The other identi-
ties are elementary or well known. 

The Main Results 

Lemma 1: L3m/Lm = x2 iff m = 1. 

Proof: If L3m/Lm = x2, then (22) implies L2 - 3(-l)/7? = x2. If m is odd, then 
Lm = 1, so m = 1. If m is even, then Lm = 4, which is impossible, since m is a 
natural number. Conversely, L3/Li = 4 = 22. 

Lemma 2: L3m/Lm * 2x2. 

Proof: Assume the contrary. Then (22) implies Lm - 3(-l)777 = 2x2. If 3|x, then 
2>\Lmi so we get ±3 = 0 (mod 9), an impossibility. If 3J[x, then Lm = 2x2 = 2 
(mod 3), an impossibility, since (2/3) = -1. 

Lemma 3: If p is odd, then Fmp E (5/p)Fm (mod p). 

Proof: This follows from (91) in [6] and Fermat*s theorem, noting that A = 5 
for the Fibonacci sequence. 
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Lemma 4: If p E 3 or 7 (mod 20), then Fmp/Fm * x2. 

Proof: Let Fmp/Fm = x2. If p\Fm, then (34) implies op(Fmp /Fm) = 1, an impossi-
bility. If p)(Fm, then Lemma 3 implies Fmp/Fm E (5/p) (mod p ) , so a:2 E (5/p) 
(mod p). If p E 3 or 7 (mod 20), then (5/p) = -1, so x2 E -1 (mod p) and p E 3 
(mod 4), an impossibility. 

Lemma 5: If F3m/Fm = 2x2, then w is odd or 772 = 2. 

Proof: We must show that F6j/F2j- = 2x2 iff j = 1. Now, Fe/F2 = 8 = 2(2)2. If 
F6j/F2j = 2x2, then (17), (18), and (20) imply (F3j/Fj)(L3j/Lj) = 2x2. If 3Jj, 
then (35) implies 2\F3j-/Fj, SO 

(.F3j/2Fj)(.L3j/Lj) = x2. 

Let d = (F3j/2Fj, L3j/Lj). Now, d | ( F 3 j - , £ 3 ^ ) . so (19) i m p l i e s d\l. We have 

F3j/2Fj = dy2, L3j/Lj = dz2. 
Lemma 2 imp l i e s d * 2. The re fo r e , a7 = 1, so Lemma 1 i m p l i e s j = 1. I f j = 3/c, 
then (35) i m p l i e s 2J(FQk/F3k. Let g = (F3k/F3k , L3k/L3k) . Then, a | (F9fc , ^9/<)> s o 

(19) i m p l i e s a | 2 . But 2J(F3k/F3k, so g = I. T h e r e f o r e , 
F9k/_F3k = ?/2> L3k/L3k = ZZ> 

which c o n t r a d i c t s Lemma 1. 
Lemma 6: F3m/Fm = 3x2 i f f (m, x2) = ( 4 , 16 ) . 

Proof: I f F3m/Fm = 3x2, then (16) i m p l i e s s(3)|3/??, so /?? = 4fc. Now (21) imp l i e s 
Lhk - 1 = 3x2. I f 3\k, then (36) i m p l i e s 2\LLik, so (L4fc + 1, LL{k - 1) = 1, so 
L^k ± 1 = w2. Now (40) i m p l i e s L2/c - 1 = u 2 or ^ 2 ^ - 3 = w2, so L2^ = 1 or 4 , 
an i m p o s s i b i l i t y . I f 3\k, then (36) i m p l i e s 2\h^k, so (LL^ + 15 £4/, - 1) = 2. 
In f a c t , (14) i m p l i e s 

Lhk + 1 Li+k - 1 

8 2 ^ 
Since the factors on the left are coprime, one of them must be a square. If 
%(Lt+fe - 1) = V2, then (40) implies L 2k - 3 = 2y2, an impossibility, since (2/3) 
= -1. Therefore, 

{Lhk + l)/8 = u2 and %(L47c - 1) = 3v2. 
Now L^k E 1 (mod 6) implies (6, /c) = 1, so L2k = 3 (mod 4). (40) implies L2k - 1 
= 8u2, so (L2^ + l)(L2k - 1) = 8u2. Since 2\h hk, (40) also implies 2JL2k> SO 
(L2k + 1, Ẑfc - 1) = 2. Thus, we have 

L2k + 1 = 4a2, L2/c - 1 =
 2hl-

Again (40) implies Lk + 3 = 4a2, so that L2 = 1, k = 1, w = 4, x2 = 16. Con-
versely, F^/^if = 144/3 = 48 = 3(4)2. 

Lemma 7: F3m/Fm * 6x2. 

Proof: Assuming the contrary and reasoning as in the proof of Lemma 6, we have 
777*= kk and L2

k - 1 = 6x2. Since L^k is odd, (36) and (14) imply 

CO^fc + D/8)(L^ - l)/2) = 6w2. 

Since the factors on the left are coprime, we have 

(Lhk + l)/8 = 2az/2, % ( £ ^ - 1) = bz2, ab = 3. 

If a = 1, then L^k = (4z/)2 - 1, which contradicts Theorem 5 in [6]. If b = 1, 
then (14) implies z2 = 3 (mod 4), an impossibility. 

308 [Nov. 



FIBONACCI NUMBERS OF THE FORM CX2, WHERE 1 < C < 1000 

Lemma 8: I f p\F5m/Fm, then p = 5 or p E 1 (mod 10) . 

Proof: I f p |F5 / 7 Z / i^ and p ^ 5 , then p\F5m/5Fm, so (23) i m p l i e s 
5F^ + 5(-l)mF% + 1 E 0 (mod p) . 

Since the discriminant is 5, we must have (5/p) = 1; therefore, (26) implies 
s(p)|(p - 1). Now (16) implies p\Fp-i. The_ hypothesis implies p\Frjm; hence, 
p\(F5m, Fp_i). (27) implies p | Fi5rrit p _ 1}. (29) implies p JF„ , so p|(Fw, Fp _ x) . 
(27) also implies pji^p-i); therefore, (5m, p - 1) * (/??, p - 1) , so 51 (p - 1) . 
Thus, p * 2, so p E 1 (mod 10). 

Lemma 9: L5m/Lm * x2. 

Proof: Assume the contrary. Then (25.) implies 

4 - 5(-l)m4 + 5 . x 2 . 
The discriminant is 25 - 4(5 - x2) = kx2 + 5. Since our equation has integer 
roots, we must have kx2 + 5 = t 2 , so x2 = 1, and L^ = (-1)777 or 4(-l)"7. But 
then l\m and Lm = 1 or 4, an impossibility. 

Lemma 10: If Fn = x2 - 2 and n £ 2 (mod 4), then (n, ;c2) = (3, 4) or (9, 36). 

Proof; 
Case 1. Let n = 4/7? + 1. The hypothesis and (30) imply 

F2m-lL2m+2 = °°2 • 
Let d = (F^m-ii ^2m+2^ ' (32) implies d\L^ , that is, <i|4. If d = 1 or 4, then 
F2m-i and ^2m + 2 a r e squares, which contradicts (6). If 6? = 2, then F2m~i = 2 # 2 

and L2m+2 = 2z2 • (2) implies 2/?? - 1 = 3, so n = 9 and a:2 = 36. 

Case 2. Let n - km - 1. The hypothesis and (31) imply 

^2^+1^2^-2 = ^2-

As in Case 1, we must have (i^ + i, ^2m-2) ~ 2> s o F2m + l = 2U2> ^2m-2 = 2s2. 
(2) implies 2??? + 1 = 3, so n = 3 and x2 = 4. 

Case 3. Let n = km. Then Fn E 0, 3, or 5 (mod 8). But x2 - 2 E 6, 7, or 
2 (mod 8). Therefore, Fn * x2 - 2. 

Lemma 11: F5m/5Fm = x2 iff w = x2 = 1. 

Proof: Let F5m/5Fm = x2. If m = 2fc, then (17), (18), and (20) imply 

(F5k/5Fk)(L5k/Lk) = x2. 
Let d = (F5k/5Fk, L5k/Lk). Then d|(F5fc, L5fc), so (19) implies <f/2. But Lemma 
8 implies 2\F'$ml5Fm, so d = 1. Therefore, both F^k/5Fk and L$k/Lk are squares, 
which contradicts Lemma 9. If 2\m, then (23) implies 

5 ^ - 5Fl + 1 = x2. 

The discriminant is 25 - 20(1 - x2) = 20x2 + 5. Since the preceding equation 
has integer roots, we must have 20x2 + 5 = t2, but then 5|t, so t2 = 25w2, and 
4^2 + 1 = 5w2. Therefore (kx)2 - 5(2w) 2 = -4. Now (33) implies that there 
exists odd n such that Fn = 2w, Ln = 4x. Also 

Fl = (5 ± 5w)/10 = (1 ± w)/2. 
Since F2 > 0, we have F2 = %(1 + u). Therefore, Fn = kF% - 2. Since n is odd, 
Lemma 10 implies Fm = 1 or 3. Now /?? is odd, so Fm * 3. Therefore, i^ = 1, so 
m = x2 = 1. Conversely, F5/5Fl = l2. 

Remark: Let Fffl = F*FOT, .where (î '% Fd) = 1 for all d < m. F* is called the 
primitive part of Fm. In particular, 
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Lemma 

Lemma 

Proof: 

F5p ~ F5p 

11 implies 
12: FoimlFrn 

I f F$m/Fm 

/F5F
P 

F*V * ' 
* px2 

= px1, 

= ^ 5 ? 

x2. 

. 
l e t 

>/5Fp 

d = 

( i f 

(F3m 

P * 

lFm> 

5) 

F3 
F3m/F3m^ ^^d\(F3m, F3m/F3m); t h u s , 

( 2 8 ) i m p l i e s d\3. I f d = 1 , t h e n F3m/Fm o r F3m/F3m i s a s q u a r e , w h i c h c o n t r a -
d i c t s Lemma 4 . I f d = 3 , t h e n F3k/Fk = 3 T / 2 , w h e r e k, = m o r 3̂ ??. Lemma 6 
i m p l i e s /c = 4 ="tfz. But F3&/F^ * px2. The c a s e Fosm/Fm = x 2 i s s i m i l a r . 

Lemma 13: F7m/Fm * 7x2. 

Proof: L e t m be t h e l e a s t i n t e g e r s u c h t h a t t h e r e e x i s t s x s u c h t h a t F7m/Fm = 
lx2. Now 7\F7m, s o ( 1 6 ) i m p l i e s z(7)\7m, so 81777. L e t 777 = 2k. ( 1 7 ) , ( 1 8 ) , and 
( 2 0 ) i m p l y 

(F7k/Fk)(L7k/Lk) = 7x2. 

Let d = (F7k/Fk, L7k/Lk). Therefore, d\(F7k, L7k) , so (19) implies d \ l . But 
(44) implies F7k/Fk is odd, so d = 1. Therefore, F7k/Fk = y2 or 7y2. But the 
first possibility contradicts Lemma 4, while the second possibility contradicts 
the minimality of m. 

Lemma 14: If p and y(p) are odd, then Ln * 2px2. 

Proof: If Ln = 2px2, then the hypothesis implies ^2(in) is odd, so (42) implies 
6/n. But the hypothesis and (43) imply n is odd, a contradiction. 

Lemma 15: If p E 5 or 7 (mod 8), then Ln * 2px2. 

Proof: Let Ln = 2px2. Then (36) implies n = 3m, so that Lm(L3m/Lm) = 2px2. 
Let d = (Lm, L3m/Lm). (41) implies <i|3. 

Case 1. d = 1. (22) implies 3\Lm, so (37) implies m i l (mod 4). We have 
Lm = az/2, L3m/Lm = 2?s2, with aZ? = 2p, so a\l or 2?|2. If a = 1, then b = 2p and 
(6) implies 7?? = 1 or 3. But £3/^1 = 4 * 2ps2; £9/^3 = 19 * 2ps2. If a = 2, 
then (7) implies m = 6, an impossibility. If & = 1, then a = 2p and Lemma 1 
implies 777= 1, so ̂  = 1 * 2pz2. Lemma 2 implies b * 2. 

Case 2. d = 3. Then Lw = 3ay2, L3m/Lm = 3b z2, with a|2 or &|2. If a = 1, 
then & = 2p, and (8) implies 777 = 2, but L§/L2 = 6 * 6ps2. (9) implies a * 2. 
(37) implies 777 E 2 (mod 4), so (22) implies L2 - 3 = 3bz2. Therefore, 3bz2 E -3 
(mod 9), so bz2 = -1 (mod 3); thus, b * 1. If £ = 2, then L2 E 3 (mod 6), which 
implies 777 = 12k ± 2. Since a = p, we have F12k±l= 3py2. (40) implies ̂ 6fc±1 + 2 

= 3py2. Therefore, (-2/p) = 1, which is impossible if p E 5 or 7 (mod 8). 

Lemma 16: Let Fn = /<px2, where 2\z{k). Then 2|n and F±n = day2, L^n = dbz2, 
where 

(2 if 3|w 
J = (*V , L^n) = < , afc = fcp, (a, 2?) = 1, and dyz = x. 

1 if 3\n 
Proof: The hypothesis, (16), and (17) imply 2\n, FVnLVn = kpx2 . The conclusion 
now follows from (19). 

Theorem 1: Fn * 6px2. 

Proof: Assume the contrary. Then (16) implies z(6)\n, so n = 12/7?. (38) and 
Lemma 16 imply F6m = hay2, L6m = 2bz2, ab = 3p. If a = 1, b = 3p; hence, (37) 
implies 77? is odd. But (1) implies m = 2, an impossibility. (3) implies a * 3. 
If b = 1, then a = 3p, so (45) implies 2|TT7, but (7) implies 77? = 1 , an impossi-
bility. (9) implies b * 3. 

Theorem 2: Fn = 3px2 iff (n, p, x2) = (8, 7, 1) or (12, 3, 16). 
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Proof: Assume Fn = 3px2. (16) implies z(3)|ft, so n = km. Lemma 16 implies F2m 
= day2, L2m = 2b z2, d = (F2m, L2m), a2? = 3p. If 3/fw, then (19) implies d = 1, 
so either F2w

 = #2 o r %2> o r L2m = ^2 o r 3^2- (1)> (3)» (6) > and (8) imply 2/?? 
= 2 or 4, so n = 4 or 8. Now î \ = 3 * 3px2. F8 = 21 = 3px2 implies p = 7, n = 
8, / = 1. If m = 3k, then (19) implies d = 2, so either F6/< = 2z/2 or 6z/2, or 
L2fe = 2z2 or 6s2. (2), (5), (7), and (9) imply 6k = 6, so n = 12. Now Flz = 
144, so p = 3, ft = 12, x2 = 16. Conversely, FQ = 21 and Fl2 = 144. 

Theorem 3: Let 2 < p < 104. Then Fn = 2px2 iff (ft, p, x2) = (9, 17, 1). 

Proof: If Fn = 2px2, then (16) implies z(2)\n, so n = 3m and Fm{F3m/Fm) = 2px2. 
Let d= (Fm, F3m/Fm). (28) implies d|3. If d = 1, then 4 = ay2, F3m/Fm = bz2, 
ab = 2p. If a = 1, then 2 F3m/Fm. Therefore, (1) and (35) imply m = 1 or 2, so 
ft = 3 or 6. But F3 = 2 * 2px2; F6 = 8 * 2px2. If a = 2, then b = p and (2) im-
plies 777 = 3 or 6, so n = 9 or 18. Now F18/F6 * px2. Fo)/F3 = 17, so, if ft = 9, 
then p = 17, x2 = 1. Lemma 4 implies b = I. If b = 2, then Fw = p7/2. Since 
^2 = 1 = Pjy2> Lemma 5 implies 7?? is odd. Therefore, (3), (4), and the 
hypothesis imply 777 = 5, 7, 11, 13, 17, or 25. But none of the corresponding 
values of F3m/2Fm is a square. If d = 3, then FOT = 3az/2, F3m/Fm = 3bz2, ab = 
2p. If a = 1, then Z? = 2p. (3) implies 777 = 4, but Fl2/FL{ = 48 = 6pz2, so p = 
2, contrary to the hypothesis. (5) implies a * 2. If 2? = 1, then a = 2p, 
which contradicts Theorem 1. If 2? = 2, then F3m/Fm = 6s2, which contradicts 
Lemma 7. Conversely, Fg = 34. 

Theorem 4: Fn = 5px2 iff (ft, p, x2) = (10, 11, 1). 

Proof: If Fn = 5px2, then (16) implies 2 (5) |ft, so ft = 5777, and Fm(F5m/Fm)= 5px2, 
so Fm(F5m/5Fm) = px2. Now (29) implies either (i) Fm = y2, F5m/5Fm = pz2, or 
(ii) FOT = py2, F5m/5Fm = z2. If (i) holds, then (1) implies 777 = 1, 2, or 12. 
We get a contradiction unless 777 = 2, ft = 10, p = 11, x2 = 1. If (ii) holds, 
then Lemma 11 implies 777 = 1, so ̂  = 1 = py2> a n impossibility. Conversely, 
FlQ = 55. 

Theorem 5: Fn = 7px2 iff (ft, p, x2) = (8, 3, 1). 

Proof: If Fn = 7px2, then (16) implies s(7)|ft, so ft = 8777. If 3̂777, then Lemma 
16 implies F^m = ay2, L^m = bz2, ab = Ip. If a = 1, then (1) implies 777 = 3, a 
contradiction. (3) implies a * 7. (6) implies 2? * 1. If 2? = 7, then (10) 
implies 4TT7 = 4, so ft = 8, p = 3, x2 = 1. If 777 = 3k, then Lemma 16 implies F12fe 
= lay2, Li2k = 2b z2, ab = 7p . (2) implies a * 1. Theorem 3 implies a * 7. 
(7) implies 2? * 1. Lemma 15 implies 2? * 7. Conversely, F8 = 21. 

Theorem 6: Fn * 15px2. 

Proof: Assume the contrary. Then (16) implies s(15)|ft, so ft = 20m. If 3\m, 
then (15) and Lemma 16 imply FiQm

 = 5az/2, ^10^7 = bz2, ab = 3p. Now (4) implies 
a * 1. Theorem 2 implies a * 3. (6) and (8) imply b * 1 and 3, respectively. 
If 777 = 3k, then (15) and Lemma 16 imply F3Qk = lOay2, L30k = 2bz2, ab = 3p 
Theorems 3 and 1 imply a * 1 and 3, respectively. (7) and (9) imply b * 1 and 
3, respectively. 

Theorem 7: Fn = 10px2 iff (ft, p, x2) = (15, 61, 1). 

Proof: If Fn = 10px2, then (16) implies s(10)|ft, so ft = 15TT7, and F5m(Fl5m/F5rn) 
= px2. Let d = (F5m, Fl5m/F5m). (28) implies d\3. (24) implies F5m = day2, 
Fi5m/F5m = dbz2, ab = 2p. Suppose d = I. If a = 1, then b = 2p and (4) implies 
5TT? = 5, so F15/F5 = 122 = 2ps2. Therefore, p = 61, ft = 15, X2 = 1. Theorem 3 
implies a * 2. Lemma 4 implies b * 1. If 2? = 2, then a = p, so Theorem 4 
implies 5777 = 10. But F3Q/FiQ * 2^2. Now suppose that d = 3. Then F5 = 15ay2, 
^15 /̂ 5 = 32?32, a2? = 2p. Theorems 2 and 1 imply, respectively, a * 1 and 2. 
Lemmas 6 and 7 imply, respectively, b * 1 and 2. Conversely, F15 = 610. 
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Theorem 8: Fn = llpx2 iff (n, p, x2) = (10, 5, 1). 

Proof: If Fn = llpx2, then (16) implies z(ll)\n, so n = 10m. If 3)(m, then Lemma 
16 implies F5m = ay2, Lbm = bz2, where ab = Up, so a or b = 1 or 11. (1) and 
(3) imply, respectively, a * 1 and 11. (6) implies b * 1. If £ = 11, then a- p. 
Now (11) implies 5m = 5, so p = 5, n = 10, and a:2 = 1. If m = 3k , then Lemma 
16 implies ^15^ = lay2, ^15^ = 2bz2, with a and 2? as above. (2) implies a * 1. 
Theorem 3 implies a 2 11. (6) implies b * 1. If 2? = 11, then L15k = 22s2. 
But since y (11) = 5, this contradicts Lemma 14. Conversely, FIQ = 55. 

Theorem 9: Let p < 10^. Then Fn = I3px2 iff (n, p, x2) = (14, 29, 1). 

Proof: If F„ = 13pjJ2, then (16) implies z(l3)\n, so n = 1m, and Fm(F7m/Fm) = 
I3px2. Let d = (Fm, F7m/Fm). (28) implies d|7. If J = 1, then Fw = ay2, 
F7m/Fm = bz2, ab = 13 p, so a or b = I or 13. If a = 1, then (1) implies m = 
1, 2, or 12. We get a contradiction unless m = 2, in which case n = 14, p = 
29, x 2 = 1. If a = 13, then b = p and (4) implies 777 = 7. But Fbt3lF7 * ps2. 
Lemma 4 implies 2? * 1. If 2? = 13, then a = p. Now, the hypothesis and (4) 
imply 777 = 4, 5, 7, 11, 13, 17, or 25. In each case, F7m/Fm * pz2. If J = 7, 
then (16) implies s(7)|#z, so m = 8k, and we have F8fe = ~l&y2, F^Sk ^Sk = 72?22, 
aZ? = 13p. (3) implies a * I. Theorem 5 implies a * 13. Lemma 13 implies 2? * 
1. If b = 13, then a = p , so Theorem 5 implies 8k = 8. But then F56/91FQ = 
z2, an impossibility. Conversely, Flif = 377. 

Theorem 10: Fn = Ikpx2 iff (n, p, x2) = (24, 23, 144). 

Proof: If Fn = Ikpx2, then (16) implies s(14)|n, so n = 2km. (38) and Lemma 16 
imply Fi2m = Aay2, £]_2m = 2bz2, ab = Ip. If a = 1, then (1) implies 12/?? = 12, 
from which it follows that n = 24, p = 23, x2 = 144. (3) implies a * 7. (7) 
implies 2? * 1. Lemma 15 implies b * 1. Conversely, F24 = 46368. 

Theorem 11: Fn = llpx2 iff (n, p, x2) = (9, 2, 1). 

Proof: If F„ = 17px2, then (16) implies z (17) \n, so n = 9m and Fm(Fojm/Fm) = 
llpx2. Let d = (Fm, F3m/Fm). (28) implies d\9. Now Fm = day2, F3m/Fm = dbz2, 
ab = lip. If d = 1 or 9, then Lemma 12 implies b * 1, 17, p. Therefore, 2? = 
17p and a = 1, so (1) implies m = 1, 2, or 12. We have a contradiction unless 
m = 1, in which case F3/llFi = 2 = p22, so p = 2, n = 9, x2 = 1. If d = 3, then 
o3(F3m/F ) is odd, but (34) implies £3(F9m/Fm) = 2. Conversely, F9 = 34. 

Theorem 12: Fn * I9px2. 

Proof: Assume the contrary. Then (16) implies z(l9)\n, so n = 18/77. Lemma 16 
implies Fgm = 2ay2, Lgm = 2bz2, ab = 19p. (2) implies a -* 1. Theorem 3 implies 
a * 19. (7) implies b * 1. Since y(19) = 9, Lemma 14 implies b * 19. 

Theorem 13: Fn = 2lpx2 iff (n, p, x2) = (16, 47, 1). 

Proof: If Fn = 2lpx2, then (16) implies z (21) | ?2, so 71 — 8/?7. (37) implies 3\Ltitm. 
If 3|m, then Lemma 16 implies F^m = 3ay2, Li^ = bz2, with aZ? = 7p. If a = 1, 
then (3) implies 4/77 = 4, so LLf = 7 = Ipz2, an impossibility. If a = 7, then 
Theorem 2 implies 4/77 = 8 and L8 = 47 = pz2, so p = 47, n = 16, and x2 = 1. (6) 
implies 2? * 1. If 2? = 7, then (10) implies Am = 4, so i^ = 3 = 3ps2, an impos-
sibility. If m = 3k, then Lemma 16 implies F^k = bay2, î2A: = 2^^2 » a^ = 7p. 
(5) implies a ^ 1. Theorem 1 implies a * 1, a * p. (1) implies b * 1. Con-
versely, FlG = 987. 

Theorem 14: Fn * 22px2. 

Proof: Assume the contrary. Then (16) implies z(22)\n, so n = 30/77. Lemma 16 
implies Flbm= 2ay2, Ll5m = 2bz2, ab = 22p, so a|22 or b\22. Now (2) and (I) 
imply a * 1 and 2, respectively. Theorem 3 implies a * 11. (3) implies 
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a * 22. (7) and (6) imply b * 1 and 2, respectively. Lemma 14 implies b * 11. 
(11) implies b * 22. 

Theorem 15: Fn * 23px2. 

Proof: Assume the contrary. Then (16) implies s(23)|ft, son = 2km . Lemma 16 
implies F12m = 2az/2, L12/77 = 2bz2, az? = 23p. (2) implies a * 1. Theorem 3 im-
plies a * 23. (7) implies 2? * 1. Lemma 15 implies b * 23. 

Theorem 16: Let p < 10^. Then Fn = 26px2 iff (ft, p, x2) = (21, 421, 1). 

Proof: If Fn = 26px2, then (16) implies 2(26) ft, so n = 21m and F7m(F2im/F7m) = 
26px2. Let d = (F777Z, F2lm/F7m). (28) implies d|3. (34) implies' I3p2lm lF7m • 
Therefore, if <f = 1, we have F7m = 13a2/2, F2im/F7m = bz2, ab = 2p. If a = 1, 
then (4) implies 7??? = 7, so F2l/2F7 = 421 = ps2. Therefore, p = 421, n = 21, 
and x2 = 1. Theorem 3 implies a * 2. Lemma 4 implies 2? * 1. If b = 2, then 
F7 = I3py2. The hypothesis and Theorem 9 imply 7/77 = 14. But FLi2/FlLi * 2s2. 
If d = 3, then (16) implies s(3)|7/??, that is, k\lm9 so 7/77 = 28A:. We now have 
2̂8fe = 39ay2, FQi+k/F2Qk = 3bz2, with aZ? = 2p. Theorems 2 and 1 imply a * 1 and 
2, respectively. Lemmas 6 and 7 imply 2? * 1 and 2, respectively. Conversely, 
F2l = 10346. 

Theorem 17: Fn = 29px2 iff (ft, p, x2) = (14, 13, 1). 

Proof: If Fn = 29px2, then (16) implies 3 (29) |ft, so ft = 14/77. If 3\m, then Lem-
ma 16 implies F7m = ay2, L7m = bz2, ab = 29p. (1) implies a * 1. (4) implies 
a * 29. (6) implies b * 1. If 2? = 29, then F7w = pz/2. (13) implies 7m = 7, 
so F7 = 13 = pz/2. Therefore, p = 13, ft = 14, x2 = 1. If m = 3fc, then Lemma 16 
implies F2ik = 2ay2, -Ẑlfc = 2^z2, &2? = 29p. (2) implies a * 1. Theorem 3 
implies a * 29. (7) implies b * 1. Since y (29) = 7, Lemma 14 implies 2? * 29. 
Conversely, Fllf = 377. 

Theorem 18: Fn * 30px2. 

Proof: Assume the contrary. Then (16) implies s (30) | ft, so ft = 60m. Lemma 16 
implies F30m = 2ty2, L30w = 2bz2

s tb = 30p. But (15) and (42) imply (b, 10) = 
1, so F30rn = 20ay2, L3Qm = 2bz2, ab = 3p. If a = 1, then F30/77 = 5(2i/)2, which 
contradicts (4). Theorem 2 implies a * 3. (7) implies b * I. (9) implies b * 
3. 

Theorem 19: Fn * 31px2. 

Proof: Assume the contrary. Then (16) implies s(31)|ft, so ft = 30m. Lemma 16 
implies Fl5m = 2ay2, ^isOT = 22?22, ab = 31p. (2) implies a * 1. Theorem 3 im-
plies a * 31. (7) implies 2? * 1. Lemma 15 implies b * 31. 

Theorem 20: Fn * 33px2. 
Proof: Assume the contrary. Then (16) implies 3 (33) |ft, so ft = 20/77. (43) implies 
ll|L10w. If 3/̂/77, then Lemma 16 implies F10m = Hay2, I/IO/T? = £32, ab = 3p. (3) 
implies a * 1. Theorem 2 implies a * 3. (6) and (8) imply b * 1 and 3, respec-
tively. If w = 3fc, then Lemma 16 implies F30^ = 22ay2, L30k = 2bz2, ab = 3p. 
Theorems 3 and 1 imply a * 1 and 3, respectively. (7) and (9) imply b * 1 and 3, 
respectively. 

Theorem 21: If p < 10\ then F^ = 34px2 iff (ft, p, x2) = (18, 19, 4). 

Proof: If Fn = 34px2, then (16) implies s(34)|n, so n = 9m and F3 (F3m/F3m) = 
34px2. Let d = (F3w, F9m/F3m). (28) implies rf|3. (35) implies 2\F3rnlF3rn. If 
c? = 1, then F3m = 2az/2, F3m/F3m = 2?22, a/3 = 17p. If a = 1, then b = I7p and 
(2) implies 3/?? = 3 or 6. If 3/7? = 3, then F3/17F3 = 1 * ps2. If 3/TZ = 6, then 
F1Q/17F6 = 19 = ps2, so p = 19; hence, ft = 18 and x2 = 4. If a = 17, then 
b = p, and Theorem 3 implies 3/?? = 9. But F27/F$ * pz2. Lemma 4 implies 2? * 1. 
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If b = 17, then F3m = 2py2. But the hypothesis and Theorem 3 imply p = 17, so 
17 | d, an impossibility. If d = 3, then (45) imlies 777 = kk, so F^fe = 6az/2, 
^36k^l2k = 3b z2, ab = 17p. (5) implies a * 1. Theorem 1 implies a * 17, p. 
Lemma 6 implies 2? * 1. Conversely, FIQ = 2584. 

Theorem 22: Fn * 35px2 . 

Proof: Assume the contrary. Then (16) implies z(35)\n, so n = 407??. If 3\m, 
then (15) and lemma 16 imply T?i§m

 = 5a?/2, £20/77 = ^^2> #& = 7p. (4) implies a * 
1. Theorem 4 implies a * 7, a * p, so b * 7. (6) implies 2? * 1. If 777 = 3k, 
then (15) and Lemma 16 imply F§Qk

 = lOay2, L§Qk = 2bz2, ab = 7p. Theorem 3 
implies a * 1. Theorem 7 implies a * 7, a * p, so & * 7. (7) implies 2? * 1. 

We omit the proofs of the two following theorems (23 and 24) because they 
are similar to proofs of prior theorems. 

Theorem 23: Fn = 38px2 iff (n, p, x2) = (18, 17, 4). 

Theorem 24: Fn •* 39px2. 

Theorem 25: Fn * klpx2. 

Proof: Assume the contrary. Then (16) implies s(42)|n, so n = 2km. (37) im-
plies 3/fL̂2/7?5 (38) implies 4/fL̂ om* Therefore, Lemma 16 implies F^im ~ 12az/2, 
Li2m = 2bz2, ab = 7p. (3) implies a * 1. Theorem 2 implies a 2 7. (7) implies 
2? * 1. Lemma 15 implies b * 7. 

Theorem 26: Fn * 5lpx2. 

Proof: Assume the contrary. Then (16) implies 2(51) n, so n = 36m. (15), (37), 
and Lemma 16 imply FiQm =102ay 2 , LiQm = 2bz2, ab = p. Theorem 1 implies a * 1. 
(7) implies 2? * 1. 

Theorem 27: Fn * 55px2. 

Proof: Assume the contrary. Then (16) implies s(55)|n, so n = 10/77 . If 3̂ 777, 
then (15) and Lemma 16 imply F $m = bay2, L^m = bz2, ab = lip. If a = I, then 
Theorem 4 implies 5T?7 = 5, so L5/II = 1 = pz2, an impossibility. If a = 11, 
then Theorem 4 implies 5m = 10, so L]_Q = 123 = pz2, an impossibility. (6) 
implies 2? * 1. If b = 11, then (11) implies 5T?7 = 5, so F5m/5 = 1 = py2, an im-
possibility. If 777 = 3/<, then (15) and Lemma 16 imply Fi$k = lOay2, ^15^ =2bz2, 
ab = lip. Theorem 3 implies a * 1. Theorem 7 implies a * 11. (7) implies 2? * 
1. Lemma 14 implies b * 11. 

Theorem 28: Fn = 65px2 iff (n, p, a;2) = (35, 141961, 1). 

Proof: F3b = 65* 141961* l2. If Fn = 65px2, then (16) implies z(65)\n, so n = 
35T?7, and F7m(F35m/F7m) = 65px2. Let d = t ^ , F35m/F7m) . Now Lemma 8 implies 
13^35/77/^7 • If 5̂ 777, then (39) implies J = 1, so Flm = I3ay2, F35m/F7m = 5bz2, 
ab = p. If a = 1, then (4) implies 7TT7 = 7, so F35/5F7 = 141961 = ps2. There-
fore p = 141961, n = 35, x2 = 1. Lemma 11 implies b * 1. If 777 = 5k, then (39) 
implies d= 5. (34) implies 52\Fl75k/F35k. Thus, F35k = 325ay2, Fl75k/F35k = 
5bz2, ab = p. But (4) implies a * 1. Lemma 11 implies 2? * 1. 

Theorem 29: Fn * 66px2. 
Proof: Assume the contrary. Then (16) implies z(66)\n, so n = 6O777. Now (43), 
(38), and Lemma 16 imply F 3§m = 44az/2, L3§m = 2b z2, ab = 3p. (3) implies a * 
1. Theorem 2 implies a * 3. (7) and (9) imply b * 1 and 3, respectively. 

Theorem 30: Fn * 70px2. 
Proof: Assume the contrary. Then (16) implies z(70)\n , so n = 120/77. (15), 
(38), and Lemma 16 imply F§Qm = 20ay2, L^0m = 2bz2, ab = 7p. (4) implies a 2 1. 
Theorem 22 implies a * 7. (7) implies b * 1. Lemma 15 implies b * 7. 
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We summarize the results of Theorems 1 through 30 in Table 1. For each 
listed value of k9 we list all solutions of (*) with c = kp, if any. The cases 
k = 2, 23, 26, 34 are subject to the restriction that p < 10,000. 

TABLE 1 

k 

2 
3 
3 
5 
6 
7 

(n, p, x2) 

(9, 17, 1) 
(8, 7, 1) 
(12, 3, 16) 
(10, 11, 1) 

*********** 
(8, 3, 1) 

k 

10 
11 
13 
14 
15 
17 
19 

(n, p, x2) 

(15, 61, 1) 
(10, 5, 1) 
(14, 29, 1) 
(24, 23, 144) 

************* 
(9, 2, 1) 
************* 

k 

21 
22 
23 
26 
29 
30 

(n, p, x2-) 

(16, 47, 1) 

************ 
************ 
(21, 421, 1) 
(14, 13, 1) 

************ 

k 

31 
33 
34 
35 
38 
39 

(n, p, x2) 

*********** 
*********** 
(18, 19, 4) 

*********** 
(18, 17, 4) 

*********** 

k 

42 
51 
55 
65 
66 
70 

(n, p, x2) 

************** 
************** 
************** 
(35, 141961, 1) 

*************** 
*************** 

Combining these new results with those of [1] and [9], we obtain Table 2, 
which lists all solutions of (*) such that 1 < C < 1000. 

o 

1 
1 
1 
2 
2 

{n, x2) 

(1, 1) 
(2, 1) 
(12, 144) 
(3, 1) 
(6, 4) 

a 

3 
5 
8 
13 
21 

T 
(n, x2 

(4, 1) 
(5, 1) 
(6, 1) 
(7, 1) 
(8, 1) 

ABLE 
) c 

34 
55 
89 
144 
233 

2 
(n, x2) 

(9, 1) 
(10, 1) 
(11, 1) 
(12, 1) 
(13, 1) 

c 

322 
377 
610 
646 
987 

(ft, X2) 

(24, 144) 
(14, 1) 
(15, 1) 
(18, 4) 
(16, 1) 

Concluding Remarks 

Notice that in every solution we have x2 = 1, 4, or 144. This leads us to 
conjecture that in any solution of (*) one must have x2 = 1, 4, or 144. 
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