FIBONACCI NUMBERS OF THE FORM CX? WHERE 1 < C < 1000

Neville Robbins
San Francisco State University, San Francisco, CA 94117
(Submitted September 1988)

Introduction

Let ¢ and n be natural numbers. Let F, denote the nth Fibonacci number,
that is Fy = Fp =1, F, = F,_; + F,,_, for n > 3. Consider the equation

(%) F, = cx?.

In [1], Cohn solved (x) for ¢ = 1, 2. In [9], we found all solutions of
(%) such that ¢ is prime and either ¢ = 3 (mod 4) or ¢ < 10,000. Harborth &
Kemnitz [4] have asked for solutions of (%) for composite values of ec.
Clearly, it suffices to consider only squarefree values of c.

If ¢ < 1000, then ¢ has at most three distinct odd prime factors. There-
fore ¢ = kp where p is prime and k = 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19,
21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 38, 39, 42, 51, 55, 65, 66, or 70. In
this paper, we solve (%) for each of the above values of ¢. In the cases k =
2, 13, 26, 34, our results are valid only for p < 10,000; in the other cases,
there are no restrictions on p. These results are listed in Table 1.
Combining these new results with those from [1] and [9], we obtain all
solutions of (%) such that 1 < ¢ < 1000. We list these solutions in Table 2.

Preliminaries

Let p denote a prime, m a natural number. Let L, denote the nth Lucas num-
ber, that is Ly =1, Ly = 3, L, = L,_1+L,_ for n > 3. Let op,(n) = k if pkn,
where k 2 0. Let (a/p) denote the Legendre symbol. Let z(n) = min{m:n‘Fm}.
If p is odd and 2|z(p), let y(p) = %z(p).

¢D) F, = x2 iff n = 1, 2, or 12.
(2) F, = 2x2 iff n = 3 or 6.
(3) If p = 3 (mod 4), then F, = pxz iff (n, p, x2) = (4, 3, 1).
(4) If p =1 (mod 4) and p < 10,000, then F, = px? iff

(n, p) = (5, 5), (7, 13), (11, 89), (13, 233), (17,1597), or (25,3001).
(5) F, # 6x2. (6) L,=x2 iff n = 1 or 3.
) L, = 2x% iff n = 6. (8) Ly = 3x2 iff n = 2.
(9) L, = 6x2. (10) L, = 7x2 iff n = 4.
(11) L, = 1llx? iff n = 5. (12) L, = 1922 iff n = 9
(13) Ly = 29x2 iff n = 7. (14) Ly, = 7 (mod 8) if 3[n.
(15) 5(L,, 13/L,, 17}L, for all n.
(16) If m > 2, then m|F, iff z(m)|n.

(17) Fo, = FyL,.
(18) 1f m > 3, then F,|F, iff m|n.
2 if 3|n,

(19) (Fps Ly) = {
1 if 3fn.
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(20) If m > 2, then Ly|L, iff n/m is odd.

(21)  Fs3,/F, = I3 - (-1)". (22) L3, /L, = L% - 3(-1)".
(23)  Fs,/5F, = 5F} + 5(-1)"F2 + 1. (24) 5[F3,/F,.
(25)  Ls,/L, =L} - 5(-1)"L2 + 5.
1 if p = #1 (mod 5),
(26) 2(p)|(p - e) where e = <-1 if p = #2 (mod 5),
0 if p = 5.
(27) (Frs Fu) = Fim, oy - (28) (B, Fr,/F,) |k.
(29) (Fn’ F5n/5Fn) = 1. (30) F’+n+l + 2 = an_1L2n+2.
(31) Fuyp1 + 2 = Fou1lp,-5. (32) (Frs Imin) |Ln-

(33) x? - 5y2 = -4 iff x = L, y = F, for some odd .

(34) If p is odd, p|F,, and pJa, then op Fpram[Fr) = k.

(35) 2|7, /F, iff 3fm. (36) 2|5, iff 3|n.

(37) 3|L, iff n = 2 (mod 4) (38) 4|0, iff n = 3 (mod 6).
5 if 5|n,

1 if 5/n.

(41) If k is odd, then (L,, Lyz,/Ly)|k.

|

(39) (Fys Fs,/Fy) = { (40) L, =L% - 2(-1)".

2 if n = 3 (mod 6),
(42) 09(Ly) =91 if n = 0 (mod 6),

0 otherwise.
(43) If p is odd, then p|L, iff n = ky(p), k odd.
(44)  F, [F, = 125F% + 175(-1)"F} + 70F2 + 7(-1)".
(45) 3|F, iff 4|n.
Remarks: (6), (7), (1), and (2) are Theorems 1 through 4 in [1]. (3) and
(4) are Corollary 1 and Theorem 3 in [9], respectively. (5) and (9) follow
from Lemmas 1 and 2 in [20], respectively. (8) and (10) are established in
[2], (11) through (13) in [11]. (32) is Theorem 1 in [7]. (28) is Lemma 16 in
[3], while (34) follows from Theorem 2 in [3]. (41) follows from Theorem 4 in
[8]. (17), (18), (20), and (27) are Iy, Theorem III, Theorem V, and Theorem II

in [5], respectively. (40) follows from I;5 and I,g in [5]. The other identi-
ties are elementary or well known.

The Main Results

Lemma 1: Lg,/L, = x? iff m = 1.

Proof: 1f L3,/L, = x2, then (22) implies L% - 3(-1)" = x2. If m is odd, then
L% =1, som= 1. If m is even, then L; = 4, which is impossible, since m is a
natural number. Conversely, L3/L; = 4 = 22,

Lemma 2: L3, /L, # 2x2.

Proof: Assume the contrary. Then (22) implies L% - 3(-1)™ = 222. 1If 3[x, then
3|Lm, so we get *3 = 0 (mod 9), an impossibility. If 3fx, then L% = 222 =2
(mod 3), an impossibility, since (2/3) = -1.

Lemma 3: If p is odd, then Fmp = (5/p)F, (mod p).
Proof: This follows from (91) in [6] and Fermat's theorem, noting that A = 5

for the Fibonacci sequence.
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Lemma 4: If p =3 or 7 (mod 20), then F,,/F, = z?.

Proof: Let Fpp/F, = x2. If plf%, then (34) implies op(Fyp/Fn) = 1, an impossi-
bility. If p*Fm, then Lemma 3 implies Fyp/Fy = (5/p) (mod p), so x2 = (5/p)
(mod p). If p = 3 or 7 (mod 20), then (5/p) = -1, so 22 z -1 (mod p) and p = 3
(mod 4), an impossibility.

Lemma 5: 1f Fj3,/F, = 222, then m is odd or m = 2.

Proof: We must show that F¢;/F,; = 2z? iff j = 1. Now, Fg/F, = 8 = 2(2)2. 1If
Fe;ilFp; = 2x?, then (17), (18), and (20) imply (F3;/F;)(Ls3;/L;) = 2z?. 1If 3[4,
then (35) implies 2|F3;/F;, so
(FgJ/ZFJ>(L3J/LJ) = .’/CZ.
Let d = (F3;/2F;, L3;/L;). WNow, d|(F3;, L3;), so (19) implies d|2. We have
F3;/2F; = dy?, Ls;/L; = da®.
Lemma 2 implies d # 2. Therefore, d = 1, so Lemma 1 implies j = 1. If j = 3k,
then (35) implies 2*F9k/F3k' Let g=(F9k/F3k’ L9k/L3k)’ Then, g)(ng, Lgk), SO
(19) implies g |2. But 2fFq,/F3,, so g = 1. Therefore,

For/Fax = y?» Lop/Ly = 2%,

which contradicts Lemma 1.
Lemma 6: F3,/F, = 3z% iff (m, x2) = (4, 16).
Proof: 1f F3,/F, = 3z%, then (16) implies 2(3)|3m, so m = 4k. Now (21) implies
L%, - 1 = 322, If 3|k, then (36) implies 2Lqu, so (Ly, + 1, Ly, - 1) = 1, so
Lup * 1 =u2. Now (40) implies L%k -1 =uy?o0r L5 - 3 =u?, so L%k =1 or 4,
an impossibility. If 3/k, then (36) implies 2fLy;, so (Lyy + 1, Ly, - 1) = 2.
In fact, (14) implies
Ly, + 1 Ly, -1
F 3 =
8 2

Since the factors on the left are coprime, one of them must be a square. If
5Ly - 1) = v2, then (40) implies L%k - 3 = 202, an impossibility, since (2/3)
= —-1. Therefore,

(Ly;, + 1)/8 = w2 and %Ly, - 1) = 302,
Lk Lk

Now Ly =1 (mod 6) implies (6, k) = 1, so Lox =3 (mod 4). (40) implies L%k -1
= 8u?, so Ly + DUy = 1) = 8u2. Since ZXqu, (40) also implies 21L2k, S0
(Lpy + 1, Lyp = 1) = 2. Thus, we have

]

= 3y2.

Loy + 1 = 4ha?, Ly - 1 = 2b2.

Again (40) implies L% + 3 = 4a?, so that LZ =1, k=1, m =4, 22 = 16. Con-
versely, Fip/Fy = 144/3 = 48 = 3(4)2.

Lemma 7: Fj3,/F, = 6x2.

Proof: Assuming the contrary and reasoning as in the proof of Lemma 6, we have
m= 4k and L&, - 1 = 6x2. Since L, is odd, (36) and (14) imply

Ly + 1)/8) Ly, - 1D/2) = 6w2.
Since the factors on the left are coprime, we have
Ly, + 1)/8 = 2ay2, %(Lyy - 1) = bz2, ab = 3.

If a = 1, then Ly, = (4y)2 - 1, which contradicts Theorem 5 in [6]. If b =1,

then (14) implies 22 = 3 (mod 4), an impossibility.
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Lemma 8: If p|Fs,/F,, then p = 5 or p = 1 (mod 10).
Proof: 1f p]FSm/Fm and p # 5, then p[F5m/SE%, so (23) dimplies

5P + 5(-1)"F2 + 1 = 0 (mod p).
Since the discriminant is 5, we must have (5/p) = 1; therefore, (26) implies
2(p)|(p - 1). Now (16) implies p|Eb_1. The hypothesis implies p|Fs,; hence,
pl(F5m, Fp_l). (27) implies PIEQSm,p—lr (29) implies p*Fm , SO p*(Fm, Fp_1).

(27) also implies p[F, ,-1); therefore, (5m, p = 1) = (m, p - 1), so 5|(p - 1).
Thus, p # 2, so p = 1 (mod 10).

Lemma 9: Ls, /L, = x2.
Proof: Assume the contrary. Then (25) implies

" 2

Ly = 5(-1)"L5 + 5 = x2.

The discriminant is 25 - 4(5 - %2) = 4x2 + 5. Since our equation has integer
roots, we must have 4x?2 + 5 = ¢2, so 22 = 1, and L% = (-1)" or 4(-1)". But
then 2|m and L2 =1 or 4, an impossibility.
Lemma 10: If F, = x2 - 2 and n # 2 (mod 4), then (n, x2) = (3, 4) or (9, 36).

Proof:
Case 1. Let n

4m + 1. The hypothesis and (30) imply
Fom-1Loms2 = 2.

Let d = (Fp,-15 Lyysp). (32) implies d|L3 , that is, d|4. If d = 1 or 4, then
Fy,-1 and Ly, ,, are squares, which contradicts (6). If d = 2, then F,,_ ; = 2y2
and Lj,.p = 232.. (2) implies 2m - 1 = 3, so n = 9 and x? = 36.

Case 2. Let n

4m - 1. The hypothesis and (31) imply

- .2
Fons1lbop-2 = x°.

As in Case 1, we must have (Fonu41> Lop-2) = 2, 80 Fopiy = 2y2, Lp,.p = 232,
(2) implies 2m + 1 = 3, so n = 3 and x2 = 4.

Case 3. Let n = 4m. Then F,, = 0, 3, or 5 (mod 8). But x2 -2 =6, 7, or
2 (mod 8). Therefore, F

I

Lemma 11: Fs,/5F, = x? iff m = 22 = 1.

Proof: Let Fs,/5F, = x2. 1f m = 2k, then (17), (18), and (20) imply
(Fsp/5F) (Lsy /Ly) 2

x4,
Let d = (Fs;/5F, Lg;/Ly). Then d|(F5k, Lgy)s so (19) dmplies d/2. But Lemma
8 implies 27F5m/5Fm, so d = 1. Therefore, both Fg /5F; and Lgy/L; are squares,
which contradicts Lemma 9. If ZXm, then (23) dimplies

5P} - 5F2 + 1 = 22.

The discriminant is 25 - 20(1 - %2) = 20x2 + 5. Since the preceding equation
has integer roots, we must have 20?2 + 5 = t2, but then 5|t, so t2 = 252, and
4x? + 1 = Sw?2. Therefore (4x)2 - 5(2w)2 = -4. Now (33) implies that there
exists odd n such that F, = 2w, L, = 4x. Also

F2 = (5 +50)/10 = (1 + w)/2.

Since F2 > 0, we have F2 = %(1 + w). Therefore, F, = 4F2 — 2. Since n is odd,
Lemma 10 implies F, = 1 or 3. Now m is odd, so F, # 3. Therefore, f =1, so

m=x? = 1. Conversely, F5/5F; = 12.

Remark : Let F, = F*F , where (F¥

mtms )

F;) =1 for all d < m. F¥* is called the
primitive part of F,. In particular,
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* .

FSp = FSP/FSFP = FSP/SFP (lf p ES 5).
Lemma 11 implies ng = x2.
Lemma 12: Fg,/F, = px?.

Proof: 1f Fg,/F, = px?, let d = (F3,/Fy,, Fg,/F3,). Now d|(F3,, Fg,/F3,); thus,
(28) implies d|3. If d = 1, then Fj3,/F, or Fo,/F3, is a square, which contra-
dicts Lemma 4. 1If d = 3, then F3,/F), = 3y%, where k = m or 3m. Lemma 6
implies k = 4 = m. But FaglF, = pxz. The case Fg,/F, = 22 is similar.

Lemma 13: F;,/F, = Tx2.

Proof: Let m be the least integer such that there exists x such that F, /F, =
7z%. Now 7|Fy,, so (16) implies z(7)|7m, so 8|m. Let m = 2k. (17), (18), and
(20) dimply

(Pl F) (L /Ly) = T2,

Let d = (Fy/Fys Lyg/Ly). Therefore, dl(F7k, L7x)s so (19) 1mplles dIZ But
(44) implies Fy; /F, is odd, so d = 1. Therefore, Fy /Fy = y or 7y But the
first possibility contradicts Lemma 4, while the second possibility contradicts
the minimality of m.

Lemma 14: If p and y(p) are odd, then L, # 2px2.

Proof: 1f L, = 2px?, then the hypothesis implies 0,(L,) is odd, so (42) implies
6/n. But the hypothesis and (43) imply n is odd, a contradiction.

Lemma 15: If p = 5 or 7 (mod 8), then L, # 2px2.

Proof: Let L, = 2px?. Then (36) implies n = 3m, so that L,(Ls,/L,) = 2pz?.
Let d = (L, L3,/L,). (41) implies d|3.

Case 1. d = 1. (22) implies 3[Lm, so (37) implies m # 2 (mod 4). We have
Ln = ay2, L3,/L, = bz?, with ab = 2p, so a2 or b|2. 1If a =1, then b = 2p and
(6) implies m = 1 or 3. But L3/L; = &4 = 2pa?%; Lg/Lz = 19 = 2pz?. 1If a = 2,
then (7) implies m = 6, an impossibility. If » = 1, then a = 2p and Lemma 1
implies m = 1, so [} = 1 # 2pz2. Lemma 2 implies b # 2.

Case 2. d = 3. Then L, = 3ay?, Lz,/L, = 3bz?, with a|2 or b|2. If a =1,
then b = 2 2p, and (8) 1mp11es m = 2, but L6/L2 =6 = 6pz (9) implies a = 2.
(37) implies m = 2 (mod 4), so (22) implies L - 3 = 3pz? Therefore, 3bz2 = -3
(mod 9), so bz? = —1 (mod 3); thus, b = 1. If b =2, then L = 3 (mod 6%, which
implies m = 12k + 2. Since a = p, we have L12k+1 3py (40) implies L6k+1 + 2
= prz. Therefore, (-2/p) = 1, which is impossible if p = 5 or 7 (mod 8).
Lemma 16: Let F, = kpz?, where 2[a(k). Then 2|n and F,, = day?, Ly, = dbz2,
where

d (F L,.) {2 it 3|n b Kk ( b) 1 d d
= 1y, 1 = s ap = s (a4, = 1, an 2 =X
o 1 if 3/n P Y
Proof: The hypothesis, (16), and (17) imply 2|n, F = kpx?. The conclusion

/EVL /QVL
now follows from (19).

Theorem 1: F, = 6px?.

n
Proof: Assume the contrary. Then (16) implies Z(G)In, so n = 12m. (38) and
Lemma 16 imply Fg, = 4ay?, Lg, = 2bz%, ab = 3p. 1f a =1, b = 3p; hence, (37)
implies m is odd. But (1) implies m = 2, an impossibility. (3) implies a =z 3.
If b = 1, then a = 3p, so (45) implies Zlm, but (7) implies m =1, an impossi-
bility. (9) implies b = 3.

Theorem 2: F, = 3px? iff (n, p, x%) = (8, 7, 1) or (12, 3, 16).
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Proof: Assume F, = 3pz2. (16) implies z(3) [n, so n = 4m. Lemma 16 implies F,,
= day?, Lo, = 2b2%, d = (Foys Ly,)» ab = 3p. 1If 3fm, then (19) implies d = 1,
so either Fy, = y? or 3y2, or Ly, = 32 or 3z2. (1), (3), (6), and (8) imply 2m
=2o0r 4, son =4 or 8. Now F, = 3 # 3px2. Fg = 21 = 3px? implies p = 7, n =
8, x2 = 1. If m = 3k, then (19) implies d = 2, so either Fer = 2y2 or 6y2, or
Loy = 282 or 6z%2. (2), (5), (7), and (9) imply 6k = 6, so n = 12. Now F,, =
144, so p = 3, n =12, 2 = 16. Conversely, Fg = 21 and Fy, = 144.

Theorem 3: Let 2 < p < 10%. Then F, = 2px2 iff (n, p, x2) = (9, 17, 1).

Proof: 1f F, = 2px?, then (16) implies z(2)|n, so n = 3m and F,(Fs,/F,) = 2px2.
Let d= (F,, F3,/F,). (28) implies d|3. If d = 1, then F, = ay?2, F3,/F, = bz2,
ab = 2p. 1f ¢ = 1, then 2 Fg3,/F,. Therefore, (1) and (35) imply m = 1 or 2, so
n =13 o0r 6. But F3 = 2 # 2px2; Fg = 8 # 2px?. If q = 2, then b = p and (2) im-
plies m = 3 or 6; so n =9 or 18. Now Fig/Fg # px2. Fq/F3 = 17, so, if n = 9,
then p = 17, 2 = 1. Lemma 4 implies b = 1. If b = 2, then F, = py?. Since
F, = 1 = py?, Lemma 5 implies m is odd. Therefore, (3), (4), and the
hypothesis imply m = 5, 7, 11, 13, 17, or 25. But none of the corresponding
values of F3,/2F, is a square. If d = 3, then F, = 3ay2, Fs,/F, = 3bz2, ab =
2p. If a =1, then b = 2p. (3) implies m = 4, but Fi,/F, = 48 = 6pz?, so p =
2, contrary to the hypothesis. (5) implies a # 2. If b = 1, then a = 2p,
which contradicts Theorem 1. If b = 2, then F3,/F, = 622, which contradicts
Lemma 7. Conversely, Fg = 34.

Theorem 4: F, = 5px? iff (n, p, x2) = (10, 11, 1).

Proof: 1f F, = 5px?, then (16) implies z(S)In, so n = 5m, and Fy,(Fg,/Fy)= 5px?,
so F,(Fs,/5F,) = pxz. Now (29) implies either (i) F, = y?2, Fs,/5F, = pzz, or
(ii) F, = pyz, Fs,/5F, = z2. If (i) holds, then (1) implies m = 1, 2, or 12.
We get a contradiction unless m = 2, n = 10, p = 11, x2 = 1. 1If (ii) holds,
then Lemma 11 implies m = 1, so F} =1 = pyz, an impossibility. Conversely,
FIO = 55.

Theorem 5: F, = 7px? iff (n, p, x2) = (8, 3, 1).

Proof: 1f F, = 7px?, then (16) implies z(7)|n, so n = 8m. 1If 3/m, then Lemma
16 implies Fy, = ay?, Ly, = bz%, ab = 7p. 1f a =1, then (1) implies m = 3, a
contradiction. (3) implies a # 7. (6) implies b = 1. If b = 7, then (10)
implies 4m = 4, son =8, p = 3, z2 = 1. If m = 3k, then Lemma 16 implies Fj,y
= 2ay?, Ly, = 2bz%, ab = 7p. (2) implies a = 1. Theorem 3 implies a = 7.
(7) implies b # 1. Lemma 15 implies b # 7. Conversely, Fg = 21.

Theorem 6: F, # 15px?.

Proof: Assume the contrary. Then (16) implies z(lS)In, so n = 20m. If 3*m,
then (15) and Lemma 16 imply Fig, = 5ay2, Ligm = bz2, ab = 3p. Now (4) implies
a # 1. Theorem 2 implies a = 3. (6) and (8) imply » # 1 and 3, respectively.
If m = 3k, then (15) and Lemma 16 imply F3gx = 10ay2, Lgzqr = 2bz2, ab = 3p

Theorems 3 and 1 imply a # 1 and 3, respectively. (7) and (9) imply b = 1 and
3, respectively.

Theorem 7: F, = 10px? iff (n, p, x?) = (15, 61, 1).

Proof: 1f F, = lOpxz, then (16) dimplies z(lO)[n, so n = 15m, and F5m(F15m/F5m)
= px?. Let d = (Fsp» Fisy/Fs,). (28) implies d|3. (24) implies Fg, = day2,
Fisy,/Fs, = dbz?, ab = 2p. Suppose d = 1. If a = 1, then b = 2p and (4) implies
5m = 5, so Fi5/Fs = 122 = 2pg?. Therefore, p = 61, n = 15, 2 = 1. Theorem 3
implies a # 2. Lemma 4 implies b # 1. If b = 2, then g = p, so Theorem 4
implies 5m = 10. But F3¢/Fyg # 2z2. Now suppose that d = 3. Then F5 = 15ay2,
Fis /Fs = 3bz2, ab = 2p. Theorems 2 and 1 imply, respectively, a =z 1 and 2.
Lemmas 6 and 7 imply, respectively, b # 1 and 2. Conversely, Fi5 = 610.
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Theorem 8: F, = llpx2 iff (n, p, x2) = (10, 5, 1).

Proof: 1f F, = llpx?, then (16) implies z(ll)|n, so n = 10m. If 3/m, then Lemma
16 implies Fs, = ay?, Ly, = bz?, where gb = 1lp, so aor b =1 or 11. (1) and
(3) imply, respectively, ¢ # 1 and 11. (6) implies b = 1. If b = 11, then a=p.
Now (11) implies 5m = 5, so p = 5, n = 10, and %2 = 1. If m = 3k, then Lemma
16 implies Fig; = Zayz, Ligy = 2bz?2, with g and b as above. (2) implies g = 1.
Theorem 3 implies a = 1l. (6) implies b = 1. If b = 11, then Ljs; = 2232.
But since y(ll) = 5, this contradicts Lemma l4. Conversely, Fig = 55.

Theorem 9: Let p < 10%. Then F, = 13px?2 iff (n, p, xz2) = (14, 29, 1).

Proof: 1f F, = 13px®, then (16) implies z(13)|n, so n = 7m, and F,(#y,/F,) =
13px?. Let d = (Fy, Fy,/F,). (28) implies d|7. 1If d = 1, then F, = ay?,
FonlFy = bz2, ab = 13 ps so ¢ or b =1 or 13. If a =1, then (1) implies m =
1, 2, or 12. We get a contradiction unless m = 2, in which case n = 14, p =
29, % = 1. 1If a = 13, then b = p and (4) implies m = 7. But F,q/F; = pz2.
Lemma 4 implies b # 1. If b = 13, then g = p. Now, the hypothesis and (4)
imply m = 4, 5, 7, 11, 13, 17, or 25. In each case, Fy,/F, # pzz. 1f d =17,
then (16) implies z(7)|m, so m = 8k, and we have Fgy, = Jay?, Fsgy /Fgx = 7bz?
ab = 13p. (3) implies a # L. Theorem 5 implies g # 13. Lemma 13 implies b
1. If b = 13, then a =p, so Theorem 5 implies 8k = 8. But then Fgq/91Fg
22, an impossibility. Conversely, Fqy, = 377.

Theorem 10: F, = l4px? iff (n, p, x2) = (24, 23, l44).

Proof: 1f F, = lhpx?, then (16) implies z(14)|n, so n = 24m. (38) and Lemma 16
imply Fi,, = bay?, Lyy, = 2bz2, ab = 7p. 1f a = 1, then (1) implies l2m = 12,
from which it follows that n = 24, p = 23, 22 = 144. (3) dimplies a = 7. (7)
implies b # 1. Lemma 15 implies b = 7. Conversely, F,, = 46368.

- Theorem 11: F, = 17px? iff (n, p, 22) = (9, 2, 1).

Proof: 1f F, = 17pz?, then (16) implies z(17)|n, so n = 9m and F,(Fg,/E,)
17pz?. Let d = (F,, Fqg,/F,). (28) implies d|9. Now F, = day?, Fg,/F, = dbz?,
ab = 17p. 1f d = 1 or 9, then Lemma 12 implies b # 1, 17, p. Therefore, b =
17p and @ = 1, so (1) implies m = 1, 2, or 12. We have a contradiction unless
m=1, in which case Fg/17F; = 2 = pz2, sop =2, n =9, 2 = 1. If d = 3, then
03(Fg,/F ) is odd, but (34) implies o03(Fg,/F,) = 2. Conversely, Fq = 34.

Theorem 12: F, = 19px?.

N

Proof: Assume the contrary. Then (16) implies 2(19){7’1, son = 18m. Lemma 16
implies Fgq, = 2ay2, Lg, = 2bz%, ab = 19p. (2) implies ¢ # 1. Theorem 3 implies
a # 19. (7) implies » = 1. Since y(19) = 9, Lemma 14 implies b = 19.

Theorem 13: F, = 2lpx? 1ff (n, p, x2) = (16, 47, 1).

Proof: 1f F, = 21pxz2, then (16) implies z(21)|n, so n = 8m. (37) implies 3[Lyy,.
1f 3[m, then Lemma 16 implies Fy, = 3ay2, Ly, = bz, with ab = 7p. 1If a = 1,
then (3) implies 4m = 4, so L, =7 = 7p22, an impossibility. If a = 7, then
Theorem 2 implies 4m = 8 and Lg = 47 = pzz, sop =47, n = 16, and x2 = 1. (6)
implies b # 1. If b = 7, then (10) implies 4m = 4, so F, = 3 = 3pz2, an impos-
sibility. If m = 3k, then Lemma 16 implies Fy,; = 6ay?, Lyyy = 2bz°, ab = Tp.
(5) implies a # 1. Theorem 1 implies a % 7, a = p. (7) implies b # 1. Con-
versely, Fig = 987. '

Theorem 14: F, = 22px?.

Proof: Assume the contrary. Then (16) implies z(22)| n, so n = 30m. Lemma 16
implies Fys, = 2ay2, Lis, = 2b3?, ab = 22p, so a|22 or b|22. Now (2) and (1)
imply a # 1 and 2, respectively. Theorem 3 dimplies a =# 11. (3) implies
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a # 22. (7) and (6) imply b # 1 and 2, respectively. Lemma 14 implies b = 11.
(11) implies b = 22.

Theorem 15: F, = 23px2.

Proof: Assume the contrary. Then (16) implies z(23)|n, son = 24m. Lemma 16
implies Fy,, = 2ay?, Ly,, = 2bz2, ab = 23p. (2) implies a # 1. Theorem 3 im-
plies a # 23. (7) implies b # 1. Lemma 15 implies b = 23.

Theorem 16: Let p < 10*. Then F, = 26pz2 iff (n, p, x?) = (21, 421, 1).

Proof: If F, = 26px?, then (16) implies z(26) n, so n = 2lm and Fy, (Fpy,/F7,) =
26px?. Let d = (Fy,, Fp1,/F7,). (28) 1mplles d|3. (34) implies 13)Fy1, /F7, -
Therefore, if d = 1, we have F;, = 13ay?, ﬂ21m/F7m =Dbz2, ab = 2p. 1If a =1,
then (4) implies 7m = 7, so Fy1/2F; = 421 = pz? Therefore, p = 421, n = 21,
and 2 = 1. Theorem 3 implies g # 2. Lemma 4 implies b # 1. If b = 2, then
F; = 13py%. The hypothesis and Theorem 9 imply 7m = l4. But Fuo/Fpy = 222,
If d = 3, then (16) implies z(3)|7m, that is, 4|7m, so 7m = 28k. We now have
Fogy = 3%ay?, Fguy/Fogy = 3bz2, with ab = 2p. Theorems 2 and 1 imply a # 1 and
2, respectively. Lemmas 6 and 7 imply b # 1 and 2, respectively. Conversely,
F21 = 10346.

Theorem 17: F, = 29px? iff (n, p, x2) = (14, 13, 1).

Proof: 1f F, = 29px?, then (16) implies z(29)|n, so n = l4m. If 3[m, then Lem-
ma 16 implies F,, = ay?, Lo, = bz2, ab = 29p. (1) 1mp11es a# 1. (4) implies
a = 29. (6) 1mplies b= 1. If b =29, then Fy, = py?. (13) implies 7m = 7,
so Fy = = py2. Therefore, p = 13, n = 14, 22 = 1. If m = 3k, then Lemma 16
implies F21k = Zay s Loy = 2bz2, ab = 29p. (2) implies a # 1. Theorem 3
implies a 2 29. (7) implies b # 1. Since y(29) = 7, Lemma 14 implies b # 29.
Conversely, Fi, = 377.

Theorem 18: F, # 30px?2.

Proof: Assume the contrary. Then (16) implies z(30)|#n, so n = 60m. Lemma 16
implies F3q, = 2ty2, L3gm = 2bz%, tb = 30p. But (15) and (42) imply (b, 10) =
1, so F3g, = 20ay?, L3gm = 2bz%2, ab = 3p. 1If a = 1, then F3q, = 5(2y)?, which
contradicts (4). Theorem 2 implies a # 3. (7) implies b # 1. (9) implies b =
3.

Theorem 19: F, = 31lpx?2.

Proof: Assume the contrary. Then (16) implies z(31)|n, so n = 30m. Lemma 16
implies Fis, = 2ay®, Lis, = 2bz%, ab = 3lp. (2) implies g # 1. Theorem 3 im-
plies a # 31. (7) implies b # 1. Lemma 15 implies b = 31.

Theorem 20: F, = 33px2.

Proof: Assume the contrary. Then (16) implies z(33)|n, son = 20m. (43) implies
11/L1gn- If 3fm, then Lemma 16 implies Fig, = llay?, Lig, = bz?, ab = 3p. (3)
implies g # 1. Theorem 2 implies a # 3. (6) and (8) imply b # 1 and 3, respec-
tively. If m = 3k, then Lemma 16 implies Fsqp = 22ay?, Lagx = 2bz?, ab =
Theorems 3 and 1 imply a # 1 and 3, respectively. (7) and (9) imply b # 1 and 3,
respectively.

Theorem 21: If p < 10%, then F, = 34px? iff (n, p, x?) = (18, 19, 4).

Proof: 1f F, = 34px2, then (16) implies z(34)|n, so n = 9m and Fj (Fgm/F3m

34px?. Let d = (F3,, Fgm/p3m . (28) implies d|3. (35) implies 2fFg, /F3,. If
d = 1, then F3, = 2ay?, Fg,/F3, = bz%, ab = 1Ip. If a = 1, then b = 17p and
(2) implies 3m = 3 or 6. If 3m = 3, then Fg/l7F3 = 1 = pz? If 3m = 6, then
F1g/17Fg = 19 = p22, so p = 19; hence, n = 18 and x2 = 4. If a = 17, then
b = p, and Theorem 3 implies 3m = 9. But Fp;/Fq # pz%2. Lemma 4 implies b = 1.
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If b = 17, then F3, = 2py2. But the hypothesis and Theorem 3 imply p = 17, so
l71d, an impossibility. If d = 3, then (45) imlies m = 4k, so Fj,; = 6ay2,
Fier/Fiox = 3b22, ab = 17p. (5) dimplies ¢ = 1. Theorem 1 implies a = 17, p.
Lemma 6 implies b # 1. . Conversely, Fig = 2584.

Theorem 22: F, = 35px?.

Proof: Assume the contrary. Then (16) implies z(35)\n, so n = 40m. 1If 3*m,
then (15) and lemma 16 imply Fug,, = 5ay2, Ly, = bz, ab = Tp. (4) implies a =
1. Theorem 4 implies a # 7, a # p, so b=z 7. (6) implies p # 1. I1If m = 3k,
then (15) and Lemma 16 imply Fgqp = 10ay2, Lgox = 2bz2, ab = 7p. Theorem 3
implies a # 1. Theorem 7 implies ¢ # 7, a # p, so b z 7. (7) implies b = 1.

We omit the proofs of the two following theorems (23 and 24) because they
are similar to proofs of prior theorems.

Theorem 23: F, = 38px? iff (n, p, x2) = (18, 17, 4).
Theorem 24: F, -# 39px2.
Theorem 25: F, # 42px?.

Proof: Assume the contrary. Then (16) implies Z(42)]n, so n = 24m. (37) dim-—
plies 3[Li,,; (38) implies 4)Li,,. Therefore, Lemma 16 implies Fy,, = 12ay?,
Ly, = 2bz2, ab = 7p. (3) implies g # 1. Theorem 2 implies g = 7. (7) implies
b 2z 1. Lemma 15 implies b = 7.

Theorem 26: F, = 51pxz2.

Proof: Assume the contrary. Then (16) implies z(51) n, so n = 36m. (15), (37),
and Lemma 16 imply Fig, =102ay?, Lign, = 2b3%, ab = p. Theorem 1 implies g # 1.
(7) implies b = 1.

Theorem 27: F, = 55px2.

Proof: Assume the contrary. Then (16) implies z(55)|n, son = 10m. 1f 3*m,
then (15) and Lemma 16 imply Fs, = 5ay?, Ls, = bz2, ab = llp. If a = 1, then
Theorem 4 implies 5m = 5, so Lg/ll = 1 = pzz, an impossibility. If a = 11,
then Theorem 4 implies 5m = 10, so Lig = 123 = pz?, an impossibility. (6)
implies b = 1. If b = 11, then (11) dimplies 5m = 5, so Fg,/5 =1 = pyz, an im-
possibility. If m = 3k, then (15) and Lemma 16 imply Fis, = 10ay?, I1s5; =2bz?,
ab = 1llp. Theorem 3 implies g # 1. Theorem 7 implies a = 11. (7) dimplies D =
1. Lemma 14 implies b = 11.

Theorem 28: F, = 65px2 iff (n, p, x2) = (35, 141961, 1).

Proof: F3s = 65% 141961 % 12. 1f F, = 65pz?, then (16) implies 2(65)|n, so n =
35m, and Fy,(F35,/F7,) = 65pz?. Let d = (Fy,, F3s,/F7,). Now Lemma 8 implies
13{F35,/F7 . 1t 5fm, then (39) implies d = 1, so Fy, = 13ay?, F3s,/F7, = 5bz?,
ab = p. 1If g =1, then (4) implies 7m = 7, so F3g5/5F; = 141961 = pz2. There-
fore p = 141961, n = 35, % = 1. Lemma 11 implies b = 1. If m = 5k, then (39)
implies d = 5. (34) implies 52*Fl75k/F35k' Thus, F35k = 325ay2, F175k/F35k =
5b22, ab = p. But (4) implies ¢ # 1. Lemma 11 implies b = 1.

Theorem 29: F, = 66px?.

Proof: Assume the contrary. Then (16) implies 2(66)|n, so n = 60m. Now (43),
(38), and Lemma 16 imply Fsq, = 4bay?, Lsg, = 2bz%, ab = 3p. (3) implies a =
1. Theorem 2 implies a 2 3. (7) and (9) imply b = 1 and 3, respectively.

Theorem 30: F, = 70px?.

Proof: Assume the contrary. Then (16) dimplies z(70)ln, so n = 120m. (15),
(38), and Lemma 16 imply Fgq, = 20ay?, Lgo, = 2bz%, ab = 7p. (4) implies a = 1.
Theorem 22 implies a # 7. (7) implies b # 1. Lemma 15 implies b = 7.
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We summarize the results of Theorems 1 through 30 in Table 1. For each

listed value of k, we list all solutions of (%) with ¢ = kp, if any. The cases

k =

2, 23, 26, 34 are subject to the restriction that p < 10,000.

TABLE 1
kK (n, p, x2) k  (n, p, x2) kK (n, p, x2) k  (n, p, z2) kK  (n, p, x2)
2 (9, 17, 1) 10 (15, 61, 1) 21 (16, 47, 1) 31 kkdkkkRAAAL 42 kkkkkkkAAAKKKK
3 (8, 7, 1) 11 (10, 5, 1) 22 kkkkhkikhkhkhk 33 kkkkkAAkAAX 51  kEkkAAAARAAKARK
3 (12, 3, 16) 13 (14{ 29, 1) 23 kkkkkkhhhhkk 34 (18, 19, 4) 55  kkkkkkkAAAAkkk
5 (10, 11, 1) 14 (24, 23, 144) 26 (21, 421, 1) 35  kkkkkkkkkkk 65 (35, 141961, 1)
6 kkkkkAKKKAK 15  kkkkkhhhxkkkk 29 (14, 13, 1) 38 (18, 17, 4) 66  krEAAKRKkAAAAKKRRKA
7 (8, 3, 1) 17 (9, 2, 1) 30 AxkkkAhkkhhk 39  kkkkAhhAAAA 70  kkkkkkhhkhkAAAKAA
19 kkkkkkkhkhkkhk

Combining these new results with those of [1] and [9], we obtain Table 2,

which lists all solutions of (%) such that 1 < ¢ < 1000.

TABLE 2
c | (n, z2) c (n, x2) ¢ n, z2) . e (n, x2)
1| (1, D 30 G, 1) 34 | (9, 1) 322 | (24, l44)
1] (2, 1) 51 (5, 1) 55 | (10, 1) 377 | (14, 1)
1| (12, 144) 8 | (6, 1) 89 | (11, 1) 610 | (15, 1)
21 (3, 1) 13 | (7, 1) 144 | (12, 1) 646 | (18, 4)
2 | (6, 4) 21 | (8, 1) 233 | (13, 1) 987 | (16, 1)
Concluding Remarks
Notice that in every solution we have %2 = 1, 4, or 144. This leads us to

conjecture that in any solution of (%) one must have x2 =1, 4, or l44.

10.

11.
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