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1. Introduction

Wiliam [8] showed that, for the recurring sequence defined by u; =0, u, =1,
and

(1.1)  uy4p = auy + by 41,
(1.2) Y u,/10" = 1/(100 - 10b - a),
n=1

where (b +a)/20 and (b ~a)/20 are less than 1 and b = vb2+ 4a (cf. [8]). Thus,
for the Fibonacci numbers defined by the same initial conditions and a = b = 1,
we get the '"staggered sum" of Wiliam:

(1.3) .0 + .01 + .001 + .0002 + .00003 + --. = 1/89.

It is the purpose of this note to generalize the result for arbitrary-order
recurring sequences, and to relate it to an arithmetic function of Atanassov

[1].

2. Arbitrary-Order Sequence

More generally, for the linear recursive sequence of order k, defined by
the recurrence relation

k
(2.1)  uy, = 2:1(—1)J+1E3un_j, n>1,
I

where the P; are integers, and with initial conditions uy = 1 and u, = 0 for
n < 0, we can establish that the formal generating function is given by

(2.2) S wux = (xkf(1/x)L,
n=20
where f(x) denotes the auxiliary polynomial

k .
(2.3)  flx) =zk+ 2 (1) xk .

Jg=1
Proof: 1f u(@) = ug + U + upx? + o0+ wpxk + --n,
then -Pixu(xz) = -Piugx - Piujx? — «++ = Plug_qxk = -+,
and (-DFa*P u(e) = (-DFPaugak + - .-,

so that k i . k .
u(x)(l—+;§%(—l)nyxJ> = ug oOr u(x)kux‘k +j§%'04JE3xJ'k) =1
or

u(@)xkf(1/x) = 1.

We see then that, for Xk = 2 and P} = -P, = 1, we get Wiliam's case in which
x = 1/10, namely
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z n o_ -2 = 1/ - -
Jé%)un/lo 1/1072f(10) 1/100(100 10b a)s

or

©

3 u,/102%7 = 1/(100 - 10b - a)

n=20

(where his initial values are displaced by 2 from those here).

3. Atanassov's Arithmetic Functions

Atanassov [1] has defined arithmetic functions ¢ and ¥ as follows. For

J ..
ZailoJ_l, aie N’
i=1

Salaz ..-CZJ', Osai§9,
let ¢: N » N be defined by

0 for n = 0,

n

¢(n)y =

J
> a; otherwise;
=1
and for the sequence of functions ¢g, ¢1, dos «.us

do(m) = n, dgp1(m) = ¢(¢,(n)),

let ¥: ¥+ A =1{0, 1, 2, ..., 9} be defined by ¥(n) = ¢,(n), in which
b (n) = dg41(n).

For example, ¢(889) = 25, ¥(889) = 7, since
$0(889) = 889,

$1(889) = 25,
$,(889) =7
= $3(889).
It then follows that
(3.1)  ¥(¥Q@o*/u(0.1)) + k) = 1,
as Table 1 illustrates.
TABLE 1
k 2 3 4 5 6 7 8§ 10 11
¥(8 ... 89) 8 7 6 5 4 3 2 9 8

ey
k-1 times

The result follows from Theorem 1 and 5 of Atanassov, which are, respectively,

(3.2) ¥+ 1) =YY@ + 1);

il

(3.3) ¥+ 9) = ¥(n).
Thus, 10%/%(1/10) = 8 ... 89, and so,
[ ——
k-1 times
Y(10%/4(1/10)) = 8(k - 1) + 8 + 1 = 8k + 1,
and Y(Y(10%/1(0.1)) + k) = ¥(9%k + 1) = ¥(9 + 1) = 1, as required.

4. Other Values of X

The foregoing was for x = 1/10. 1In Table 2, we list the values of ¥(f(x))
for integer values of k and 1/x = X from 2 to 10 when P; = -1, j =1, 2, ..., k,
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in the appropriate recurrence relation.

TABLE 2
Xk} 2 3 4 5 6 7 8 9 10
2 1 1 1 1 1 1 1 1 1
3 5 5 5 5 5 5 5 5 5
4 2 7 9 8 4 6 5 1 3
5 1 4 1 4 1 4 1 4 1
6 2 2 2 2 2 2 2 2 2
7 5 7 3 2 4 9 8 1 6
8 1 7 1 7 1 7 1 7 1
9 8 8 8 8 8 8 8 8 8
10 8 7 6 5 4 3 2 1 9
To prove these results, we let x = 1/X and so
(4.1)  FO) = Xk = xk=1 _ yk=2 _ ... - x2 -y - 1.

The calculations which follow are mod 9. Thus, 3% =0, 6t =0, 9% = 0 when ¢

(Of course, 9%= 0 when ¢ = 1.)

Case A: X =3, 6, 9 =1,
f) =z -N - 1 (mod 9) for all k,
f(3)5_455’
f) =-7:=2,
f(9) = -1 = 8 as in the appropriate rows of Table 2.
Case B: X=4,7,10=3+1,6+1,9+1=0N+1,
(4.2) FW+1) =W+ 1% - @+ Dk -0 - @+ 1D%2-W+1) -1.

2.

The only terms that interest us, mod 9, in the expansions are the second

last and last in each expansion. Then (4.2) becomes
Nk - N(k = 1) = N(k =2) = «ee =Ne3 =Ne2-0N-1
+1-1-1-1-.+.. -1-1-1-1
k k-2 times
Nk - VY n- (k-2 -1
n=1

]

= Nk - % Nk - Dk - (k - 1)

Nk{l - Lk - 1)} - (k- 1)
= Vk2 - (k - 1) since -N = 2N for N = 3, 6, 9.

Thus, f(4) =3k%2 -k +1
F(7) = 6k — k + 1
f(10) = -k + 1 since 9k2 = 0.

Substitution of the values X = 2, 3, ..., 10 gives the tabulated values.
Case C: X=2,5,8=3-1,6-1,9~-1, =0V-1,
(4.3) fW@W -1) =@ -1k =@ -1k - .o - W-12-@-1) - L.
As in Case B, this becomes
Nk(-1)%"1 = Wk - 1)(-1)%"2 = N(k - 2)(-1)%"3 = «o. =W 2(-1)!
- N 1(-1)0 + (-1)k - (-1)F"1 - (-Dk"2 — ..o -1 41 - 1.
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When k is even, this becomes
=Nk - qﬂk - 1) = Wk - 2) - Nk - 32 + e + 2V -N+ 1+ 1
- 14+ 14+ ..o -1+1-1 -2NK + N+ N+ -« + T +1
[N —_— ) LS -} -
k/2 terms
—2NK+%7<ZV+1

]

3
-sz+1

= 3Nk + 1 since -3 =

=1 since 3V = 0,

i
[e)]

which agrees with the appropriate entries of Table 2.
When Kk is odd, (4.3) becomes

Nk + Nk = 1) = Nk = 2) + Nk = 3) = oo = N+2(-1)! = y«1(-1)0 =1

-1+1~1+1=-...-1+1-1=PnNk+ N+ 1N . N,- 2
(k - 1)/2 terms

=Nk+%(k—l)lv—2,

=3 1y
=7 Nk 3 N 2
= -3Nk + 4 - 2 since 3 = -6,
-1 =8
= 4N - 2 since =38 = 0.
Thus,
f@2) =1,
f(5) = 4,
f(8) = 7, as required.

5. Concluding Comments

Wiliam's staggered sum for Pell numbers [4] can be written as
(5.1) .0 + .01 + .002 + .0005 + .00012 + .000029 + -.- = 1/79.
This is a particular case of Hulbert [5] who also noted a result like (1.3)
which can be found in Reichmann [6]. Hulbert stated, without proof, that
(5.2) ii 107"F, = 1/(9.9 - k)
for ik
(5.3) Foo1=KkF, + Fy_y with 7y -1, Fy =k (k=1, 2, ..., 8).

When kX = 2, we have the Pell case. We can generalize the Pell sequence by set-—

ting P} = 2, P; = -1, j =2, ..., k, ... . Then we may extend the work of Sec-

tion 4 by the addition of a term —-X*~1 in f(X), for X = 2, 3, ., 10. -
Hulbert also noted a staggered sum formed from

(5.4) 210-"(” + o 1) = 1071¢0.9)"*! (=0, 1, 2, ...).

n=1

This is a particular case of Equation (1.3) of Gould [2], namely

5.5) 3 (” + ”)xr = (1 - z) L,

r=0 r
Curiously, the same issue of the Bulletin where Hulbert's note appeared had in
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its Puzzle Corner the problem of finding

-2 n -4
s.e) (0)+ ("5 %)+ ( )+ e
-6 o 2 )P0t
the series terminating when the binomial coefficients become improper. This,
too, follows from Gould whose Equations (1.74) and (1.75) are, respectively

[n/2]

2 (") @ -ty - p,

[n/2] _

2 CDF(* ) = gDt s pte o,
=0

where o = (1 + ¥5)/2, 8 = (1 - ¥5)/2, and [-] represents the greatest integer
function. It can be seen then that the series (5.6) equals

[n/2]
1 (" T k
2+ “(* ")

= (ol - gntly/2(a - B) + ((-1)/3] 4+ (—1)[2n+1)/31y /4,

It is also of interest to note that the generalized sequences of Section 2 are
related to statistical studies of such gambling events as success runs [7] and
expected numbers of consecutive heads [3].

N~

References

1. K. T. Atanassov. "An Arithmetic Function and Some of Its Applications."
Bulletin of Number Theory 9 (1985):18-27.

2. H. W. Gould. Combinatoricl Identities. Morgantown: West Virginia Univer-
sity, 1972.

3. K. Hirst. "Are m Heads Better than Two?" International Journal of Mathe-
matical Education in Science and Technology 19 (1988):687-90.

4, A. F. Horadam. "Pell Identities." Fibonacci Quarterly 9 (1971):245-63.

5. B. J. Hulbert. "Fibonacci Sequences." Bulletin of the Institute of Mathe-
matics and Its Applications 14 (1978):187.

6. W. J. Reichmann. The Spell of Mathematics (quoted in Hulbert).

7. A. Tomkins & D. Pitt. "Runs and the Generalised Fibonacci Sequence."" Mathe-
matical Gazette 69 (1985):109-13.

8. D. Wiliam. "A Fibonacci Sum." Mathematical Gazette 69 (1985):29-31.

dokokokok

1991] 51



