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1. Introduction 

Wiliam [8] showed that, for the recurring sequence defined by u\ = 0, u^_ = 1, 
and 

(1.1) un+2 = aun + bun+i, 

(1.2) J2un/I0n = 1/(100 - 102? - a) , 
n= 1 

where (b +a)/20 and (b -a) 120 are less than 1 and b = A 2 + 4a (cf. [8]). Thus, 
for the Fibonacci numbers defined by the same initial conditions and a = b = 1, 
we get the "staggered sum11 of Wiliam: 

(1.3) .0 + .01 + .001 + .0002'+ .00003 + •-- = 1/89. 

It is the purpose of this note to generalize the result for arbitrary-order 
recurring sequences, and to relate it to an arithmetic function of Atanassov 
[1]. 

2. Arbitrary-Order Sequence 

More generally, for the linear recursive sequence of order k, defined by 
the recurrence relation 

k 
(2.1) un = X (-iy + 1Pt/wn_f/, n > 1, 

J = i 

where the Pj are integers, and with initial conditions UQ = 1 and un = 0 for 
n < 0, we can establish that the formal generating function is given by 

(2.2) £ unxn = (xkfa/x))~K 
n= 0 

where f{x) denotes the auxiliary polynomial 
k 

(2.3) f(x) = xk + £ (-D3PjXk-i. 
j = i . 

Proof: If u(x) = UQ + u\x + u^x2- + . . . + ukxk + . .., 

then -Pixu(x) = -P^u^x - PiUiX2 - ... - Piu-^-iX^ - •••, 

and {-l)kxkPku(x) = (~l)kPku0xk + . .., 

so that ( k • \ / k 

u(x)[l + ̂  (-l)3P,x3) = un or w(x)x/c(x-k+ J] (-DP^^M = 1 
or 

<(a0U + L (-DJ^-^J) = ẑo o r wW^t"k + E i-l)PjXj~k) = 

u(x)xkf(l/x) =1. 

We see then that, for k = 2 and P]_ = -P£ = 1, we get Wiliam5 s case in which 
x = 1/10, namely 
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J2 un/lOn = l/10-2/(10) = 1/^(100 - 102? - a), 
100v 

n = 0 
or 

£ unll02 + n = 1/(100 - 102? - a) 
n= 0 

(where his initial values are displaced by 2 from those here). 
3. AtanassovTs Arithmetic Functions 

Atanassov [1] has defined arithmetic functions § and ¥ as follows. For 
J 

n = J^ â lO*7"2-, at e 3Sf, 
i= 1 

= aj_a2 • • • dj 9 0 < di < 9, 
l e t <j>: Itf -* U be def ined by 

I 0 for n = 0, 

*(n) = \ 4- ,u • 
I z^ ai otherwise; 

and for the sequence of functions (J)Q, (j)l5 ̂ j . .., 

cf>0(n) = n, $l + i(n) = <J>(<|>£, (w)), 

let Y: U -> A = {0, 1, 2, . .., 9} be defined by Y(n) = <f>£(n), in which 

M n ) = 4>£+i(w). 
For example, (j)(889) = 25, ¥(889) = 7, since 

4>0(889) = 889, 
*l(889) = 25, 
<f>2(889) = 7 

= (f)3(889). 
It then follows that 

(3.1) nni0*7u(0.1)) + k) = 1, 
as Table 1 illustrates. 

TABLE 1 

Zc 2 3 4 5 6 7 8 10 11 
¥(8 . . . 89) 8 7 6 5 4 3 2 9 8 

fc-1 t imes 

The result follows from Theorem 1 and 5 of Atanassov, which are, respectively, 

(3.2) Y(n + 1) = Y(Y(n) + 1); 

(3.3) ¥(« + 9) = ¥(n). 

Thus, 10k/«(l/10) = 8 ... 89, and so, 
k - 1 times 

moVu(l/10)) = 8(fc - 1) + 8 + 1 = Sk + 1, 

and V(V(10k/u(0.1)) + k) = ¥(9k + D = ̂ (9 + 1) = 1, as required. 

4. Other Values of X 

The foregoing was for x = 1/10. In Table 2, we list the values of ¥(/(#)) 
for integer values of k and l/x = X from 2 to 10 when Pj = -1, j = 1, 2, . . . , k, 
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in the appropriate recurrence relation. 

TABLE 2 

x/k 

2 
3 
4 
5 
6 
7 
8 
9 

10 

2 

1 
5 
2 
1 
2 
5 
1 
8 
8 

3 

1 
5 
7 
4 
2 
7 
7 
8 
7 

4 

1 
5 
9 
1 
2 
3 
1 
8 
6 

5 

1 
5 
8 
4 
2 
2 
7 
8 
5 

6 

1 
5 
4 
1 
2 
4 
1 
8 
4 

7 

1 
5 
6 
4 
2 
9 
7 
8 
3 

8 

1 
5 
5 
1 
2 
8 
1 
8 
2 

9 

1 
5 
1 
4 
2 
1 
7 
8 
1 

10 

1 
5 
3 
1 
2 
6 
1 
8 
9 

To prove these results, we let x = l/X and so 

(4.1) f(X) = Xk - Xk~l - Xk~2 - ... - X2 - X - 1. 
The calculations which follow are mod 9. Thus, 3 ^ 0 , 6t E 0, 9t = 0 when t > 2. 
(Of course, 9*E 0 when t = 1.) 

Case A: X = 3 , 6, 9 = tf, 
/ ( t f ) = -tf - 1 (mod 9) for a l l k, 
/ ( 3 ) E -4 = 5, 
/ ( 6 ) E -7 E 2, 
/ ( 9 ) E - 1 E 8 as i n the a p p r o p r i a t e rows of Table 2 . 

Case B : J = 4 , 7 , 10 = 3 + 1 , 6 + 1 , 9 + 1 = tf + 1, 
(4 .2 ) /(/I/ + 1) = (N + l ) f e - (tf + D ^ " 1 - . . . - ( # + I ) 2 - ( / ! / + 1) - 1. 

The only terms that interest us, mod 9, in the expansions are the second 
last and last in each expansion. Then (4.2) becomes 

Nk - N(k - 1) - N(k - 2) - ... -tf-3-tf-2-tf-l 
+ 1 - 1 - 1 - 1 - ..<• - 1 - 1 - 1, " 1 

- Nk - N^n - (k - 2) - 1 k~2 times 

n= l 

= 2Wc - -| tf(fc - l)Zc - (fc - 1 ) 

= Mcjl - |(fc - 1 ) | - (fe - 1) 

E M:2 - (fc - 1) since -tf = 2N for tf = 3, 6, 9. 

Thus, /(4) = 3k2 - k + I 
/(7) = 6fc2 - fc + 1 
f(10) = -k + 1 since 9fc2 = 0. 

Substitution of the values k = 2, 3, ...,10 gives the tabulated values. 

Case C: X = 2, 5, 8 = 3 - 1 , 6 - 1 , 9 - 1 , = tf - 1, 

(4.3) /(/!/ - 1) =• (tf - Dk - (N - l) k" x - -.. - (tf - D 2 - (N - 1) - 1. 

As in Case B, this becomes 

Nk(-l)k~l - N(k - l){-l)k-2 - N(k - 2)(-l)/c~3 - ... - N • 2(-l)1 

- /!/ • 1(-1)°  + (-l)k - (-l)7^1 - (-l)^2 - ... - 1 + 1 - 1. 

1991] 4 9 



GENERALIZED STAGGERED SUMS 

When k i s even, t h i s becomes 

7Nk - N(k - 1), = N(k - 2) - N(k - 3) + ••• + 271/ - N + 1 + 1 

r 1 + 1 + • • • r 1 + 1 - 1 = -INK + 1/1/ + N + ••• + N. + 1 
k/2 terms 

= -2M + I &tf + 1 

= -~ Nk + 1 

E 3/1/fc + 1 s i n c e -3 = 6 
E 1 s i n c e 3/1/ E 0, 

which agrees with the appropriate entries of Table 2. 
When k is odd, (4.3) becomes 

Nk + N(k - 1) - /!/(/< - 2) + /!/(£: - 3) - • • • - N • 2(-l)1 - tf • 1(-1)°  - 1 

t- 1 + 1. .-1 + 1, - - - - ,-1 + 1, - 1 = Nk +.N + N+--- + N. 

= Nk + 

= !#fc 

E - 3 M 

E 4/1/ -

(fe - l ) / 2 terms 

\{k - l)N - 2. 

- | / 1 / - 2 

+ 4/1/ - 2 s i n c e 3 = - 6 , 
- 1 E 8 

2 s i n c e -3/1/ = 0. 
Thus, 

/(2) E 1, 
/(5) E 4, 
/(8) E 7, as required. 

5. Concluding Comments 

Wiliamfs staggered sum for Pell numbers [4] can be written as 

(5.1) .0 + .01 + .002 + .0005 + .00012 + .000029 + ... = 1/79. 

This is a particular case of Hulbert [5] who also noted a result like (1.3) 
which can be found in Reichmann [6]. Hulbert stated, without proof, that 

(5.2) f; 10"nFn = 1/(9.9 - k) 
n = 1 

for 

(5.3) Fn+l = kFn + Fn.l with Fl - 1, Fz = k (k = 1, 2, ..., 8). 

When k - 2, we have the Pell case. We can generalize the Pell sequence by set-
ting Pi = 2, Pj = -1, j = 2, ..., k} ... . Then we may extend the work of Sec-
tion 4 by the addition of a term -Xk~1 in f(X), for X = 2, 3, ..., 10. 

Hulbert also noted a staggered sum formed from 

(5.4) £ 10-*(r + * ~ M = 10-1(0.9)-?J+1 (r = 0, 1, 2, . . . ) . 

This is a particular case of Equation (1-3) of Gould [2], namely 

(5.5) t r t v - u-^-n-1-
Curiously, the same issue of the Bulletin where Hulbert's note appeared had in 
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its Puzzle Corner the problem of finding 

the series terminating when the binomial coefficients become improper. This, 
too5 follows from Gould whose Equations (1.74) and (1.75) are, respectively 

^f! (U l k ) = («n+1 - Bn+1)/(« - 6), 
[n^\-Dk(n I k) = |((-D["/3] + (-1)"»+1>/31), 

where a = (1 + /5)/2, 3 = (1 - /5)/2, and [•] represents the greatest integer 
function. It can be seen then that the series (5.6) equals 

\ I ' «•<-»'>(" ;*) 
= (an + 1 - 3n + 1)/2(a - 3) + ((-l)[n/3] + (-1) [2(«+D/3]) /4. 

It is also of interest to note that the generalized sequences of Section 2 are 
related to statistical studies of such gambling events as success runs [7] and 
expected numbers of consecutive heads [3]. 

References 

1. K. T. Atanassov. "An Arithmetic Function and Some of Its Applications." 
Bulletin of Number Theory^ 9 (1985):18-27. 

2. H. W. Gould. Combinatorial Identities. Morgantown: West Virginia Univer-
sity, 1972. 

3. K. Hirst. "Are m Heads Better than Two?" International Journal of Mathe-
matical Education in Science and Technology 19 (1988)^687-90. 

4. A. F. Horadam. "Pell Identities." Fibonacci Quarterly 9 (1971):245-63. 
5. B. J. Hulbert. "Fibonacci Sequences." Bulletin of the Institute of Mathe-

matics and Its Applications 14 (1978):187. 
6. W. J. Reichmann. The Spell of Mathematics (quoted in Hulbert). 
7. A. Tomkins & D. Pitt. "Runs and the Generalised Fibonacci Sequence." Mathe-

matical Gazette 69 (1985):109-13. 
8. D. Wiliam. "A Fibonacci Sum." Mathematical Gazette 69 (1985):29-31. 

1991] 51 


