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1. Introduction

Let (u) = u(a, b), called the Lucas sequence of the first kind (LSFK), be a
second-order linear recurrence satisfying the relation

N Upsp = QUpy1 T bun’

where uy = 0, u; = 1, and the parameters a and b are integers. Let D = a2 + 4p
be the discriminant of u(a, b). Let (v) = v(a, b), called the Lucas sequence
of the second kind (LSSK), be a recurrence satisfying (1) with initial terms
vg = 2, v; = a. Throughout this paper, p will denote an odd prime unless
specified otherwise. Further, d will always denote a residue modulo p. The
period of wu(a, b) modulo p will be denoted by u(p). It is known (see [5])
that, if p*b, then u(a, b) is purely periodic modulo p. We will always assume
that, in the LSFK u(a, b), p|b. The restricted period of u(a, b) modulo p,
denoted by a(p), is the least positive integer ¢ such that u,+s = suy (mod p)
for all nonnegative integers »n and some nonzero residue s. Then s is called
the principal multiplier of (u) modulo p. It is easy to see that o(p)|u(p) and
that B(p) = u(p)/a(p) is the exponent of the principal multiplier s of (u)
modulo p.

We will let A(d) denote the number of times the residue d appears in a full
period of u(a, b) modulo p and N(p) denote the number of distinct residues
appearing in u(a, ») modulo p. 1In a previous paper [13], the author considered
the LSFK u(a, 1) modulo p and gave constraints for the values which A(d) can
attain. In particular, it was shown that A(d) < 4 for all d. Upper and lower
bounds for WN(p) were given in terms of o(p). Schinzel [8] improved on the
constraints given in [13] for the values A4A(d) can have in the LSFK u(a, 1)
modulo p.

In this paper we will consider the LSFK u(a, -1) modulo p and determine the
possible values for 4(d). 1In particular, we will show that A(d) < 2 for all d.
We will also obtain upper bounds for N(p). If a(p) is known, we will determine
N(p) exactly. Schinzel [8] also presented results concerning A(d) for the LSFK
u(as -1) (mod p), citing a preprint on which the present paper is based.

In [12], the author obtained the following partial results concerning 4(d)
in the LSFK u(a, -1) (mod p).

Theorem 1: Consider the LSFK u(a, -1) modulo p with discriminant D = g2 - 4.

(1) If p 25 and p*D, then there exists a residue d such that 4(d) = 0.
(ii) 1If p|D, then A(d) # 0 for any d. 1In particular, we must have that g = *2
(mod p). If ¢ = 2 (mod p), then

U, = n (mod p)

and A(d) =1 for all d. If a = -2 (mod p), then
U, = (-1)"*1n (mod p)

and 4(d) = 2 for all d.
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2. Preliminaries

A general multiplier of u(a, b) (mod p) is any nonzero residue s' such that
Uptt = 8'uy,  (mod p)

for some fixed positive integer %' and all nonzero integers n. It is known
that, if s is the principal multiplier of wu(a, b) (mod p) and s’ is a general
multiplier of u(a, b) (mod p), then

! = gt (mod p)

for some 7 such that 0 < 7 < B(p) - 1.

For the LSFK u(a, b), let k = a(p). We will let A;(d) denote the number of
times the residue d appears among the terms

uki, Uki+1s =0 uki+k—1 modulo D>

where 0 < 7 < B(p) — 1. Results concerning 4;(d) will be obtained for the LSFK
u(a, -1) (mod p).

The following results concerning u(a, b) and v(a, b) are well known:
(2) v2 - Dud = 4(-b)";
(3) Up, = UpDp.

Proofs can be found in [4].

3. The Main Theorems

Our results concerning the distribution of residues in the LSFK u(a, -1)
modulo p will depend on knowledge of the values of a(p), 8(p), and (D/p), where
(D/p) denotes the Legendre symbol. Theorems 2 and 3 will provide information
on the values u(p), a(p), and B(p) can take for the LSFK u(a, -1) depending on
whether (D/p) = 0, 1, or -1.

Theorem 2: Let u(a, b) be a LSFK. Then

(4) a(@|p - 0/p).

Further, if p/D, then

(5) a(p) | (p - (D/p))/2

if and only if (-b/p) = 1. Moreover, if (D/p) = 1, then
(6) up)|p - 1.

Proof: Proofs of (4) and (6) are given in [4, pp. 44~45] and [1, pp. 315-17].
Proofs of (5) are given in [6, p. 441] and [l, pp. 318-19].

Theorem 3: Consider the LSFK u(a, -1) with discriminant D. Suppose that p*D.
Let D' be the square-free part of D. If |a| > 3, let ¢ be the funcamental unit
of Q(V/D7). Let s be the principal multiplier of u(a, -1) modulo p.

(i) B8(p) =1l or 25 s =1 or -1 (mod p).

(ii) If o(p) = 0 (mod 2), then B(p) = 2.
(iii) If a(p) = 1 (mod 2), then B(p) may be 1 or 2.

(iv) If (2 - a/p) (2 + a/p) = -1, then o(p) = 0 (mod 2) and B(p) = 2.

(v) 1f (2 - alp) 1 and (2 + a/p) = -1, then a(p) 1 (mod 2) and B(p) 2.
(vi) If (2 - -1 and (2 + a/p) = 1, then a(p) 1 (mod 2) and B(p) 1.
(vii) If p =1 (mod 4), (D/p) =1, and the norm of ¢ is -1, then q(p)|(p ~-1)/4.
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Proof: This is proved in [11, pp. 328-31].
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We are now ready for the statement of our principal theorems. Following
the notation introduced by Schinzel in [8], we will let S = S(p) denote the set
of all the values which A(d) attains in the LSFK u(a, -1) modulo p.

Theorem 4: Let u(a, -1) be an LSFK. Suppose that B(p) = 1, and let k = a(p).
Then k = 1 (mod 2). Let Ay(d) denote the number of times the residue d appears
among the terms ug, U], ..., Uk-1)/2 modulo p. Let Aj(d) denote the number of
times the residue d appears among the terms U+1)/2> Uk+3)/2s =5 U, modulo p.

(i) 4(d) = A(-d).
(ii) If p = 5, then § = {0, 1}.
(iii) A'(d) = 0 or | for ¢ = 0, 1.
(iv) Af(d) = A{(-d).

Theorem 5: Let u(a, -1) be an LSFK. Suppose that a(p) = 1 (mod 2) and B(p) = 2.

(1) A(d) = 4(=d).

(ii) If p =2 5, then S = {0, 2}.
(iii) If d # 0 (mod p), then 4;(d) = 0 or 2 for 7 = 0, 1.
(iv) A4g(0) = 41(0) = 1.

(V) Ao(d) Al(—d).

Theorem 6: Let u(a, -1) be an LSFK with discriminant D. Suppose a(p) = 0 (mod
2). Then 8(p) = 2 and (-D/p) = 1.

(1) A(d) = A(-d).

(i1) 4(d) = 1 if and only if d = #2//-D (mod p).

(iii) If p =2 5, then S = {0, 1, 2}.

(iv) 1f d £ 0 or *2/V/=D (mod p), then A;(d) = 0 or 2 for ¢ = 0, 1.
(v) 1f d = 0 or #2//=D (mod p), then 4;(d) = 1 for © = 0, 1.

(Vi) A0<d) = Al(“d).

Theorem 7: Let u(a, -1) be an LSFK. Suppose that p*D and a ¥ 0, 1, or -1 (mod
p). Let D' be the square-free part of J. Let ¢ be the fundamental unit of
Q(/D"y. Let ¢; = 0 if a(p) = 1 (mod 2) and ¢; = 1 if a(p) = O (wod 2).

(1) HW(p) = 1 (mod 2).
11y N(p) = (p - @/p))/2 + ;.
(iii) If p = 1 (mod 4), (D/p) = 1, and ¢ has norm -1, then

Np) < (p - )/4 + cy.
(iv) N(p) = a(p) + ;.

4. Necessary Lemmas

The following lemmas will be needed for the proofs of Theorems 4-7.

Lemma 1: Let u(a, b) be an LSFK. Let s be the principal multiplier of ()
modulo p and let k¥ = a(p). Then

(7 Ug-p = (—1)”+1sun/bn (mod p),
for 0 < »n < k. In particular, if » = -1 (mod p), then
(8) Uk -y = ~su, (mod p),

for 0 < n < k.
Proof: We proceed by induction. Clearly,
Ug-g = 0 = (~1)0%1lgyy/p0

0 = ug (mod p).
Also,

n

Up-1 b"l(uk+1-auk) = b‘l(sul— a e 0)5 (—l)l+18u1/bl (mod p).
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Now assume that

Upg-p = (—l)n+lsun/b” (mod p)

and
Ug-n+1y = (-1)" 28y, /D" (mod p).
Then
Uk-(n+2) = b (ug—y - auy - (n+1))
= b—l(_l)n+ls[(bun/bn+l) + (aun+1/b”+1)]
= bl (-1)" g (u, o /b)) = (1)"*35u,,,.,/b"*2 (mod p).
The result for b = -1 (mod p) follows by inspection.

Lemma 2: Let u(a, b) be an LSFK. Let n and ¢ be positive integers such that
n+c <a(p) - 1. Let k = a(p). Then

(9 (un+c/“n)(uk—n/uk—n-c) = (=b)¢ (mod p)-

Proof: This follows from congruence (7) in Lemma 1. Another proof is given in
[12, p. 123].

Lemma 3: Consider the LSFK u(a, b). Let ¢ be a fixed integer such that 1 <
e < oa(p) - 1. Then the ratios u,,./u, are all distinct modulo p for 1 < n <
a(p) - 1.

Proof: This is proved in [12, pp. 120-21].
Lemma 4: Let u(a, -1) be an LSFK and let k = a(p). Then
U, t tu,,. (mod p)

for any positive integers »n and ¢ such that either n + ¢ < k/2 or it is the
case that nw > k/2 and n + ¢ < k - 1.

Proof: Suppose there exist positive integers # and ¢ such that n + ¢ < k -1
and
Uy = tuyie (mod p).
Then
un+c/un = *1 (mod p).
By Lemma 2,
(un+c/un)(“k—n/uk_n_g) =z 1°

1 (mod p);
hence,

il

Uk-n/Uk-n-c Un+elth, = *1 (mod p).
Thus, by Lemma 3,

n+ec=k-mn
leading to
n=(k=-c)2.

Consequently,
n=+(=-e¢)/2andn+c=(k+c)2.
The result now follows.

Lemma 5: Let u(a, -1) be an LSFK and let k = a(p). Let N; be the largest in-
teger t such that there exist integers njy, 7, ..., Nt for which 1 < ny % [k/2]
and u,, % % unj(mod p) if 1 << < § < [k/2], where [x] is the greatest integer
less than or equal to x. Then

(10)  N(p) = 2N + 1.

Proof: By Theorem 3, B(p) = 1 or 2. First, suppose that B(p) = 2. Then -1 is
the principal multiplier of (x) modulo p and the residue ~d appears in (u)
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modulo p if and only if d appears in () modulo p. Moreover, it follows from
Lemma 1 and the fact that -1 is a principal multiplier of (u) modulo p that if
d # 0 (mod p) and d appears in (u) (mod p), then d = *u,, (mod p) for some <%
such that 1 < 7 < N;. Including the residue 0, we see that (10) holds.

Now suppose that B(p) = 1. By congruence (8) in Lemma 1, the residue -d
appears in () modulo p if and only if d appears in (u) modulo p. It also fol-
lows from Lemma 1 that, if d # 0 (mod p) and d appears in (u) modulo p, then
d = *u, (mod p) for some 7 such that 1 < < < V;. Counting the residue 0, we
see that the result follows.

Lemma 6: Let u(a, -1) be an LSFK. Let k = a(p). Let A'(d) denote the number
of times the residue d appears among the terms 7, 7y, ..., N[y} modulo p. Let
NV, be defined as in Lemma 5.

(i) A'(d) + A'(-d) = 0 or 1.

Proof: (i) follows from Lemma 4; (ii) follows from (i).

Lemma 7: Let u(a, b) be an LSFK. Suppose that pfb . Let s be the principal
multiplier of (#) modulo p and sJ be a general multiplier of (u) (mod p), where
1 <4 <B(p) -1. Then

A(d) = A(s9d).
Proof: This is proved in [13].

Lemma 8: Let u(a, -1) be an LSFK with discriminant D. Suppose that a(p) = O
(mod 2). Let k = a(p). Then

U, = *2/V-D (mod p).

Proof: Since a(p) =0 (mod 2), it follows from (4) that p[D. By (2), it fol-
lows that

a1y vf, - Dk, = 4P = 4.
Now, ug,o # 0 (mod p). Thus, by (3), vy, = 0 (mod p). Hence, by (11),
—Duf/z = 4 (mod p)

and the result follows.

5. Proofs of the Main Theorems

We are finally ready to prove Theorems 4-7.

Proof of Theorem 4: The fact that a(p) = 1 (mod 2) follows from Theorem 3.
(i) and (iv) follow from Lemma 1; (ii) follows from Theorem 1(i), Lemma
6(i), and Lemma 1; (iii) follows from Lemma 6(i) and the fact that A(0) = 1.

Proof of Theorem 5: (i) follows from Lemma 7; (ii) and (iii) follow from Theo-
rem 1(i), Lemma 6(i), Lemma 1, and the fact that -1 is the principal multiplier
of u(a, -1) modulo p; (iv) follows by inspection; and (v) follows from the fact
that -1 is the principal multiplier of () modulo p.

Proof of Theorem 6: The fact that B(p) = 2 follows from Theorem 3. The fact
that (-D/p) = 1 follows from Lemma 8.

(i) follows from Lemma 7; (ii), (iv), and (v) follow from Lemmas 8, 6(i),
and 1 and the fact that -1 is the principal multiplier of () modulo ps (iii)
follows from Theorem 1(i), Lemma 6(i), Lemma 1 and the fact that -1 is the
principal multiplier of u(a, -1) modulo p; and (vi) follows from the fact that
-1 is the principal multiplier of (u) modulo p.
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Remark: Note that Theorem 3 gives conditions for the hypotheses of Theorems 4-
6 to be satisfied.

Proof of Theorem 7: (i) follows from Lemma 5; (ii) follows from Lemma 5, Lemma
6(ii), and Theorem 2; (iii) This follows from Lemma 5, Lemma 6(ii), and Theorem
3(vii); and (div) follows from Lemmas 5 and 6(ii).

6. Special Cases

For completeness, we present Theorems 8 and 9 which detail special cases we
have not treated thus far. For these theorems, p will designate a prime, not
necessarily odd.

Theorem 8: Let u(a, -1) be an LSFK. Suppose p/D.

(i) 1If a = o (mod p), then a(p) = 2, B(p) = 2, N(p) = 3, A(0) = 2, A(1) =
A(-1) =1, and 4(d) = 0 if d # 0, 1, or -1 (mod p).

(ii) If a = 1 (mod p) and p > 2, then a(p) = 3, B(p) = 2, N(p) = 3, A(0) =
A(Cl) = A(-1) = 2, and A(d) = 0 if d # 0, 1, or -1 (mod p).
(iii) If a =1 (mod p) and p = 2, then a(p) = 3, B(p) = 1, N(p) = 2, 4(0) =
and A(1) =
(iv) 1If a = -1 (mod p) and p > 2, then a(p) = 3, B(p) =1, N(p) = 3, A(0) =
A(l) = A(-1) =1, and A(d) = 0 if d # 0, 1, or -1 (mod p).

Proof: (i)-(iv) follow by inspection.

Theorem 9: Let u(a, -1) be an LSFK. Suppose that plD. Then a = *2 (mod p).
If a = 2 (mod p), then a(p) = p, B(p) = 1, N(p) = p, and A(d) = 1 for all resi-
dues d modulo p. If p > 2 and @ = -2 (mod p), then a(p) =p, B(p) = 2, N(p) =
p, and A(d) = 2 for all residues d modulo p.

Proof: This follows from Theorem 1(ii).

Remark: 1f D = 0 (mod p), we see from Theorem 9 that the residues of u(a, -1)
are equidistributed modulo p. See [7, p. 463] for a comprehensive list of
references on equidistributed linear recurrences.

7. Concluding Remarks

In [8] and [13] it was shown that, for the LSFK u(a, 1) modulo p, 4(d) < 4
In the present paper it was shown that, for the LSFK u(a, -1) modulo p, A(d) <
2. In [l4] we extend these results considerably. Specifically, let w(a, b) be
a second-order linear recurrence with arbitrary initial terms wg, w; over the
finite field F, satisfying the relation

Wpypp = QWpel + Duy.
where b # 0. Then
A(d) < 2+ ord(-b)

for all elements d € Fq, where ord(x) denotes the order of x in Fj.
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