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1. Introduction 

Let (u) = u(a9 b), called the Lucas sequence of the first kind (LSFK), be a 
second-order linear recurrence satisfying the relation 

(1) un + 2 = aun+i + bun> 
where UQ = 0, U\ - 1, and the parameters a and b are integers. Let D = a2 + kb 
be the discriminant of u(a, b). Let (v) = v(a, b), called the Lucas sequence 
of the second kind (LSSK), be a recurrence satisfying (1) with initial terms 
VQ = 2, V\ = a. Throughout this paper, p will denote an odd prime unless 
specified otherwise. Further, d will always denote a residue modulo p. The 
-period of u(a, b) modulo p will be denoted by u(p). It is known (see [5]) 
that, if p\b, then u(a, b) is purely periodic modulo p. We will always assume 
that, in the LSFK u(a9 b), p\b. The restricted period of u(a, b) modulo p, 
denoted by a(p), is the least positive integer t such that un + t - sun (mod p) 
for all nonnegative integers n and some nonzero residue s. Then s is called 
the principal multiplier of (zO modulo p. It is easy to see that a(p)|u(p) and 
that 8(p) = u(p)/a(p) is the exponent of the principal multiplier s of (u) 
modulo p. 

We will let A(d) denote the number of times the residue d appears in a full 
period of u(a, b) modulo p and N(p) denote the number of distinct residues 
appearing in u(a, b) modulo p. In a previous paper [13], the author considered 
the LSFK u(a, 1) modulo p and gave constraints for the values which A(d) can 
attain. In particular, it was shown that A(d) < 4 for all d. Upper and lower 
bounds for N(p) were given in terms of a(p). Schinzel [8] improved on the 
constraints given in [13] for the values A(d) can have in the LSFK u(a, 1) 
modulo p. 

In this paper we will consider the LSFK u(a, -1) modulo p and determine the 
possible values for A(d) . In particular, we will show that A(d) < 2 for all d. 
We will also obtain upper bounds for N(p). If a(p) is known, we will determine 
N(p) exactly. Schinzel [8] also presented results concerning A(d) for the LSFK 
u(a9 -1) (mod p), citing a preprint on which the present paper is based. 

In [12], the author obtained the following partial results concerning A(d) 
in the LSFK u(a, -1) (mod p). 

Theorem 1: Consider the LSFK u(a, -1) modulo p with discriminant D = a1 - 4. 

(i) If p > 5 and p\D, then there exists a residue d such that A(d) = 0. 
(ii) If p\D, then A(d) * 0 for any d. In particular, we must have that a = ±2 

(mod p). If a E 2 (mod p), then 

un E n (mod p) 

and A{d) = 1 for all d. If a E -2 (mod p), then 

un E (-l)n+1n (mod p) 

and i4(d) = 2 for all d. 
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2. Preliminaries 

A geneval multiplier of u(as b) (mod p) is any nonzero residue s! such that 

un + t ~ s !un (mod p) 

for some fixed positive integer t ! and all nonzero integers n. It is known 
that, if s is the principal multiplier of u(as b) (mod p) and s ! is a general 
multiplier of u(a, b) (mod p) 5 then 

s ' = s^ (mod p) 

for some i such that 0 < i < 3(p) - 1= 
For the LSFK u(a, b) , let A: = a(p). We will let A^(d) denote the number of 

times the residue d appears among the terms 
uki> Uki + I> •••> "H + fe-1 modulo p5 

where 0 < i < $(p) - 1. Results concerning A^(d) will be obtained for the LSFK 
u(a, -1) (mod p). 

The following results concerning u(as b) and v(as b) are well known: 

(2) vl - Bui = 4(-^)n; 
(3) uln = unvn. 

Proofs can be found in [4]. 

3. The Main Theorems 

Our results concerning the distribution of residues in the LSFK u(a, -1) 
modulo p will depend on knowledge of the values of a(p), 3(p)> and (D/p) s where 
(P/p) denotes the Legendre symbol. Theorems 2 and 3 will provide information 
on the values u(p)s a(p)s and $(p) can take for the LSFK u(a5 -1) depending on 
whether (D/p) = 0, 1, or -1. 

Theorem 2: Let u(a, b) be a LSFK. Then 

(4) a(p)|p - (D/p), 

Further, if p\D, then 

(5) a(p)|(p - (Dip))12 
if and only if (-b/p) = 1. Moreover, if (D/p) = 1, then 

(6) u(p)|p - 1. 

Proof: Proofs of (4) and (6) are given in [4, pp. 44-45] and [1, pp. 315-17]. 
Proofs of (5) are given in [6, p. 441] and [1, pp. 318-19]. 

Theorem 3: Consider the LSFK u(as -1) with discriminant D. Suppose that p\D. 
Let Dr be the square-free part of D. If \a\ > 3, let e be the funcamental unit 
of Q(SD1). Let s be the principal multiplier of u(a, -1) modulo p. 

(i) 3(p) = 1 or 2; s = 1 or -1 (mod p). 
(ii) If a(p) = 0 (mod 2), then 3(p) = 2. 
(iii) If a(p) E 1 (mod 2), then 3(p) may be 1 or 2. 
(iv) If (2 - a/p) = (2 + a/p) = -1, then a(p) E 0 (mod 2) and g(p) = 2. 
(v) If (2 - a/p) = 1 and (2 + a/p) = -1, then a(p) = 1 (mod 2) and B(p) = 2. 
(vi) If (2 - a/p) = -1 and (2 + a/p) = 1, then a(p) = 1 (mod 2) and 3(p) = 1. 
(vii) If p E 1 (mod 4), (D/p) =1, and the norm of e is -1, then a(p)|(p - 1)/4. 
Proof: This is proved in [11, pp. 328-31]. 
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We are now ready for the statement of our principal theorems. Following 
the notation introduced by Schinzel in [8], we will let S = Sip) denote the set 
of all the values which Aid) attains in the LSFK u{a, -1) modulo p. 

Theorem 4: Let u(a9 -1) be an LSFK. Suppose that 3(p) = 1, and let k = a(p). 
Then k = 1 (mod 2). Let A Lid) denote the number of times the residue d appears 
among the terms M Q , z l̂5 ..., (̂/c-l)/2 modulo p. Let A {(d) denote the number of 
times the residue d appears among the terms &(&+!)/2> u{k+3)/2> •••» u

k modulo p. 

(i) A(d) = A(-d). 
(ii) If p > 5, then S = {0, 1}. 

(iii) A'id) = 0 or 1 for i = 0, 1. 
(iv) A^d) = A[i-d). 

Theorem 5: Let u(a, -1) be an LSFK. Suppose that a(p) E 1 (mod 2) and $(p) = 2. 

(i) A(d) = A(-d). 
(ii) If p > 5, then S = {0, 2}. 

(iii) If d t 0 (mod p ) , then Ai(d) = 0 or 2 for i = 0, 1. 
(iv) A0(0) = A^O) = 1. 
(v) A0(d) = Al(-d). 

Theorem 6: Let w(a, -1) be an LSFK with discriminant D. Suppose a(p) E 0 (mod 
2). Then 3(p) = 2 and (-£/p) = 1-

(i) A(d) = 4(-d). 
(ii) 4(d) = 1 if and only if d = ±2//=Z? (mod p) . 

(iii) If p > 5, then 5 = {0, 1, 2}. 
(iv) If d t 0 or +2/S-D (mod p) , then ̂ ( d ) = 0 or 2 for i = 0, 1. 
(v) If d = 0 or ±2//=£ (mod p) , then ^ W ) = 1 for i = 0, 1. 

(vi) 40(d) = 4i(-d). 
Theorem 7: Let u(a, -1) be an LSFK. Suppose that p\l) and a i 0, 1, or -1 (mod 
p) . Let Z?f be the square-free part of D. Let e be the fundamental unit of 
Qi/D1). Let cl = 0 if a(p) = 1 (mod 2) and cx = 1 if a(p) E 0 (mod 2). 

(i) Nip) E 1 (mod 2). 
(ii) Nip) < (p - iD/p))/2 + Cl. 
(iii) If p E 1 (mod 4), (£/p) = 1, and e has norm -1, then 

/l/(p) < (p - l)/4 + cY. 
(iv) il/(p) = a(p) + Cl. 

4. Necessary Lemmas 

The following lemmas will be needed for the proofs of Theorems 4-7. 

Lemma 1: Let u(a, b) be an LSFK. Let s be the principal multiplier of (u) 
modulo p and let k = a(p). Then 

(7) uk-n E i-l)n+lsun/bn (mod p), 

for 0 < n < k. In particular, if b = -I (mod p) , then 

(8) wk-n E ~s^n (mod P)J 

for 0 < n < k. 

Proof: We proceed by induction. Clearly, 

uk.Q E 0 E i-l)0+lsu0/b° E 0 E u0 (mod p ) . 
Also, 

z^-i = b~1iuk + i - az^) E Z?-1(sw1- a • 0) = (-l)1 + isw1/Z?1 (mod p) . 
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Now a s s u m e t h a t 

uk-n E ( 
and 

uk-(n + l) 
Then 

uk-(n + 2) 

The result for b 

Lemma 2: Let u(a , b ) be an LSJFK. Let n and c be positive integers such that 
n + G < a(p) - 1. Let k = a(p). Then 

(9) (un+c/un)(uk_n/uk-n-c) = (-b)c (mod p). 

Proof: This follows from congruence (7) in Lemma 1. Another proof is given in 
[12, p. 123]. 

Lemma 3: Consider the LSFK u(a, b) . Let o be a fixed integer such that 1 < 
c < a(p) - 1. Then the ratios un + c/un are all distinct modulo p for 1 < n < 
a(p) - 1. 

Proof: This is proved in [12, pp. 120-21]. 

Lemma 4: Let u(a, -1) be an LSFK and let k = a(p). Then 

un f ±un+c (mod p) 

for any positive integers n and c such that either n + c < k/2 or it is the 
case that n > k/2 and n + c < k - 1. 

Proof: Suppose there exist positive integers n and c such that n + a < k - 1 
and 

w^ E ±un + c (mod p) . 
Then 

Un+c/Un = ±1 (mod p). 
By Lemma 2, 

(Un + c/u^iUk-n/Uk-n-c) = 1° = 1 (mod p) ; 
hence, 

Uk~nl^k-n-c E Un+clun ~ ±1 (mod p). 

Thus, by Lemma 3, 

n + c = k - n 
leading to 

n = (k - c)/2. 

Consequently, 

n = (k - c)/2 and n + o = (fc + c)/2. 

The result now follows. 

Lemma 5: Let w(a, -1) be an LSFK and let k = a(p). Let /l/x be the largest in-
teger t such that there exist integers nls n2> • ••> w* f o r which 1 < n^ < [fc/2] 
and wni t ± unj. (mod p) if 1 < i < J < [k/2], where [#] is the greatest integer 
less than or equal to x. Then 

(10) N(p) = 2Nl + 1. 

Proof: By Theorem 3, 3(p) = 1 or 2. First, suppose that 3(p) = 2. Then -1 is 
the principal multiplier of (u) modulo p and the residue -d appears in (u) 

1991] 7 5 

- l ) n + 1 s M „ / i " (mod p) 

E ( - l ) n + 2 s u n + 1 / ^ + 1 (mod p ) . 

E b"l(uk.n - awk_(n + 1)) 
E b - 1 ( - l ) n + 1s[(Z?wn/Z?n + 1 ) + (aun + 1/bn + l)] 

= b-l(-l)n + ls(un+2/bn + l) E ( - l ) n + 3 s u n + 2 / ^ + 2 ( m o d p ) . 
E - 1 (mod p) fo l lows by i n s p e c t i o n . 
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modulo p if and only if d appears in (u) modulo p. Moreover, it follows from 
Lemma 1 and the fact that -1 is a principal multiplier of (u) modulo p that if 
d t 0 (mod p) and d appears in (u) (mod p) , then d = ±uni (mod p) for some i 
such that 1 < i < 71/]_. Including the residue 0, we see that (10) holds. 

Now suppose that $(p) = 1. By congruence (8) in Lemma 1, the residue -d 
appears in (u) modulo p if and only if d appears in (u) modulo p. It also fol-
lows from Lemma 1 that, if d t 0 (mod p) and d appears in (u) modulo p, then 
d = ±uni (mod p) for some i such that 1 < i < 7l/]_ . Counting the residue 0, we 
see that the result follows. 

Lemma 6: Let u (a , -1) be an LSFK. Let k = a (p) . Let ,4'(d) denote the number 
of times the residue d appears among the terms ri\9 n^* . ..» n[k/2] modulo p- Let 
71/1 be defined as in Lemma 5. 

(i) A'(d) + i4'(-d) = 0 or 1. 
(ii) Nx = [&/2]. 

Proof: (i) follows from Lemma 4; (ii) follows from (i). 

Lemma 7: Let u(a, b) be an LSFK. Suppose that p \b . Let s be the principal 
multiplier of (u) modulo p and sJ be a general multiplier of (w) (mod p), where 
1 < j < $(p) - 1. Then 

/4(d) = i4(s«?'<f). 

Proof: This is proved in [13]. 

Lemma 8: Let u (a , -1) be an LSFK with discriminant D. Suppose that a (p) = 0 
(mod 2). Let k = a(p). Then 

uk/2 E ±llJ-D (mod p) . 

Proof: Since a(p) E 0 (mod 2), it follows from (4) that p![D. By (2), it fol-
lows that 

(11) yfc
2

/2 - Du\/Z = 4 ( l ) f c / 2 = 4 . 

Now, Mj(,/2 ^ 0 (mod p) . Thus, by (3), ŷ /2 = 0 (mod p) . Hence, by (11), 
o 

~Duk/2 E ^ ^mod ̂ ^ 
and the result follows. 

5. Proofs of the Main Theorems 

We are finally ready to prove Theorems 4-7. 

Proof of Theorem 4: The fact that a(p) = 1 (mod 2) follows from Theorem 3. 
(i) and (iv) follow from Lemma 1; (ii) follows from Theorem l(i), Lemma 

6(i), and Lemma 1; (iii) follows from Lemma 6(i) and the fact that A(0) = 1. 
Proof of Theorem 5: (i) follows from Lemma 7; (ii) and (iii) follow from Theo-
rem l(i), Lemma 6(i), Lemma 1, and the fact that -1 is the principal multiplier 
of u(a, -1) modulo p; (iv) follows by inspection; and (v) follows from the fact 
that -1 is the principal multiplier of (u) modulo p. 

Proof of Theorem 6: The fact that $(p) = 2 follows f rom Theorem 3. The fact 
that (-D/p) = 1 follows from Lemma 8. 

(i) follows from Lemma 7; (ii), (iv), and (v) follow from Lemmas 8, 6(i), 
and 1 and the fact that -1 is the principal multiplier of (u) modulo p; (iii) 
follows from Theorem l(i), Lemma 6(i), Lemma 1 and the fact that -1 is the 
principal multiplier of u(a9 -1) modulo p; and (vi) follows from the fact that 
-1 is the principal multiplier of (u) modulo p. 
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Remark: Note that Theorem 3 gives conditions for the hypotheses of Theorems 4-
6 to be satisfied. 

Proof of Theorem 7: (i) follows from Lemma 5; (ii) follows from Lemma 5, Lemma 
6(ii), and Theorem 2; (iii) This follows from Lemma 5, Lemma 6(ii), and Theorem 
3(vii); and (iv) follows from Lemmas 5 and 6(ii). 

6. Special Cases 

For completeness, we present Theorems 8 and 9 which detail special cases we 
have not treated thus far. For these theorems, p will designate a prime, not 
necessarily odd. 

Theorem 8: Let u(a, -1) be an LSFK. Suppose pj(D. 

(i) If a = 0 (mod p), then a(p) = 2, S(p) = 2, N(p) = 3, 4(0) = 2, 4(1) = 
4(-l) = 1, and 4(d) = 0 if d f 0, 1, or -1 (mod p) . 

(ii) If a = 1 (mod p) and p > 2, then a(p) = 3, $(p) = 2, /l/(p) = 3, 4(0) = 
4(1) = 4(-l) = 2, and 4(d) = 0 if d t 0, 1, or -1 (mod p) . 

(iii) If a E 1 (mod p) and p = 2, then a(p) = 3, S(p) = 1, N(p) = 2, 4(0) = 1, 
and 4(1) = 2. 

(iv) If a E -1 (mod p) and p > 2, then a(p) = 3, G(p) = 1, N(p) = 3, 4(0) = 
4(1) = 4(-l) = 1, and 4(d) = 0 if d t 0, 1, or -1 (mod p) . 

Proof: (i)-(iv) follow by inspection. 

Theorem 9: Let u(a, -1) be an LSFK. Suppose that p\D. Then a = ±2 (mod p) . 
If a E 2 (mod p), then a(p) = p, 3(p) = 1, N(p) = p, and 4(d) = 1 for all resi-
dues d modulo p. If p > 2 and a E -2 (mod p) , then a(p) = p, $(p) = 2, il/(p) = 
p, and 4(d) = 2 for all residues d modulo p. 

Proof: This follows from Theorem l(ii). 

Remark: If D E 0 (mod p ) , we see from Theorem 9 that the residues of u(a, -1) 
are equidistributed modulo p. See [7, p. 463] for a comprehensive list of 
references on equidistributed linear recurrences. 

7. Concluding Remarks 

In [8] and [13] it was shown that, for the LSFK u(a, 1) modulo p, 4(d) < 4. 
In the present paper it was shown that, for the LSFK u(as -1) modulo p, 4(d) < 
2. In [14] we extend these results considerably. Specifically, let w(a9 b) be 
a second-order linear recurrence with arbitrary initial terms WQ, W\ over the 
finite field Fq satisfying the relation 

wn+2 = awn+l + bWn« 

where b * 0. Then 

4(d) < 2 • ord(-2?) 

for all elements d e Fqi where ord(x) denotes the order of x in ^ . 
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