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PROBLEMS PROPOSED IN THIS ISSUE 

H-452 Proposed by Don Redmond, Southern Illinois U., Carbondale, IL 

Let pr(m) denote the mth p - g o n a l number (777/2) {2 + (r - 2) (77? - 1 ) } . Char-
a c t e r i z e the v a l u e s of v and 7?7 such t h a t 

P.W £p,<*>-
k= 1 

H-453 Proposed by James E. Desmond, Pensacola Jr. College, Pensacola, FL 

Show t h a t fo r p o s i t i v e i n t e g e r s 7?? and n, 

m L(2.m+ l)n 

and 
Frs m 

- f ^ - £ (-i)(n+1)(w";f)^(2^-i). 

Ln 0=1 

H-454 Proposed by Larry Taylor, Rego Park, NY 
Construct six distinct Fibonacci-Lucas identities such that 

(a) Each identity consists of three terms; 
(b) Each term is the product of two Fibonacci numbers; 
(c) Each subscript is either a Fibonacci or a Lucas number. 

SOLUTIONS 

An Old-Timer 

H-91 Proposed by Douglas Lind, U. of Virginia, Charlottesville, VA 
(Vol. 4, no. 3, October 1966) [corrected] 

[!]• Let m = — , then show 

Fkn rn-l 
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where 
[{-l)mn i f k i s odd 

0 i f k i s even 
and [x] i s t he g r e a t e s t i n t e g e r not- exceeding x. 

Solution by James E. Desmond, Pensacola Jr. College, Pensacola, FL 

Using the well-known a l g e b r a i c i d e n t i t y ? 

ffl-j ^ _ £ a r V ( * k ~ 1 - 2 j ' +yk~l-2J) + arL^J^LzJ 1 + ( - D f c + 1 

x - y . . 

for a l l p o s i t i v e i n t e g e r s k and nonzero r e a l numbers x,2/ wi th x * y; l e t a; = a" 
and y - 6" where w i s a p o s i t i v e i n t e g e r . We o b t a i n 

an - 3n yr 0
 2 

That i s , 

^ - f ( -D^L + c-if ffl * + (-Dfe+1 

jF .2-/ t l> ^n( /c- l -2j) + ^ i ; 2 J = 0 

j'= 0 

Pell-Mell 

H-433 Proposed by H.-J. Seiffert, Berlin, Germany 
(Vol. 27, no. 4, August 1989) 

Let P Q , P J , . . . be the P e l l numbers def ined by 

P0 = 0, P : = 1, Pn = 2Pn_l + Pn_2 fo r n > 2. 

Show t h a t , for n = 1, 2 , . . . , 

6(n + l ) P n _ 1 + P n + 1 = ( - l ) n + 1 ( 9 n 2 - 7 ) P n + 1 (mod 2 7 ) . 

Solution by Robert B. Israel, U. of British Columbia, Vancouver, B.C. 

The congruence 

(1) Pn E ( - l ) n ( ( 1 8 n 2 + 21n + 2)Pn + 12nF„+ 1) (mod 2 7 ) , for a l l n > 0, 
can be established by checking that the right-hand side obeys the defining 
equations for Pn mod 27. Some tedious but straightforward manipulations then 
lead to the desired result. 

Not content to let the matter rest there, we generalize it. Let p and k be 
natural numbers, and define Un by 

U0 - 0, Z7i - 1, Un - (p - l)^-i + Un-Z 

(so that the Pell numbers are the case p = 3). 

Theorem: If no prime factors of p are equal to 5 or less than k9 there is a 
congruence 
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k- 1 . 
(2) Un E ( -1 ) " J2n^ajFn + bdFn+1) (mod p*) , for a l l n > 0, 

J = 0 

where â- and 2̂- are integers. 

It is more convenient to work with Vn = (~l)n+^Un. The generating functions 
of Fn and Vn are, respectively, 

F(z) = and 7(g) 
1 - Z - Z1 1 + (p - 1)3 - Z2 

Letting x = z ~ l - l - z , \ j e have F(s) = x~l and 

nz) = — J — = £ (-p)^-W (mod p*) 

(this being interpreted as a statement about formal power series in the inde-
terminate z with coefficients in the integers mod pk). The generating function 
of n3Fn is 

G ^ - (*£)'*•<*>• 
The generating function of (n + l)JFn+i is s" 1 ^ - ^ ) . To prove the theorem, it 
is enough to prove that for 2 < j < k there are congruences 

J-l 
(3) x~J = E (*i + diz-^G^z) (mod p*). 

i- o 
Let w = 3""1 + s. I claim that 

(4) Gld{z) = 2Z ^fi- with c = (2j)!5J\ 
i= 1 x 

(5) G2i + 1(3) - ̂ £^,2^1^ With ^ + 2,2,- = W + D'5"' 

where c^ . are integers. The proof is by induction, using the identities 

Z% = ~~W' Z%, = ~X " l> Wl = {X + 1 ) 2 + 4 = 5 + 2X + x2-

Equation (4) allows us to express l/x2{}' + l mod pfe in terms of G^Az) and 
lower powers of 1/x, as long as (2j)!5J is invertible mod pfe. To treat l/x2j+2 

similarly, we first use the identity (2z~l - l)w = (2z~l + l)x + 5 and (5) to 
get 

«> i ? i i ^ • « • - - » * , . . - 2 i ; *•*" :,"'"•2j-
2J + 1 a - l 

2 X< ci+i,2j+i~zr> 
^= 1 x 

where #1,2,7 + 1 = 0- T n e factors of z~l that arise here are harmless. To avoid 
factors of z~2, however, we can use the identity (s-1 + 2)w = (z~l - 2)x + 5z~l 

together with (5) to get 

(27 + 1),5J+1s"1 2j+l -1 
— ^ = («-l + 2)Gy+1 - _E VCi.u+l + ^ + l , y + l)V 

+ 2
2 ^ 1 gj + l,2j + l 

i- 1 x 
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Repeated use of these formulas results in the desired congruences (3). 
In the case k = 3, for example, the result of all of this is 

°n ~ ( 1} \\ 10 50 5 + 25 5 " V ^ + V1T + 1~F* + 1) 
(mod p3) 

if (p, 10) = 1. With p = 3, this yields (1). 

Also solved by P. Bruckman, R. J. Hendel, L. Kuipers, G. Wulczyn, and the 
proposer. 

Strange Sex 

H-434 Proposed by Piero Filipponi & Odoardo Brugia, Rome, Italy 
(Vol. 27, no. 4, August 1989) 

Strange creatures live on a planet orbiting around a star in a remote gal-
axy. Such beings have three sexes (namely, sex A, sex B, and sex C) and are 
reproduced as follows: 

(i) An individual of sex A (or simply A) generates individuals of sex C by 
parthenogenesis. 

(ii) If A is fertilized by an individual of sex Bs then A generates 
individuals of sex B. 

(iii) In order to generate individuals of sex A, A must be fertilized by an 
individual of sex A, an individual of sex Bs and an individual of sex C. 

Find a closed form expression for the number Tn of ancestors of an individual 
of sex A in the nth generation. Note that, according to (i), (ii), and (iii), 
A has three parents (T\ =3) and six grandparents (T2 = 6). 

Solution by Russell Jay Hendel, Bowling College, Oakdale, NY 

We claim 

Tn = cAr" + |1, for all n > 0; 

with r1 > 2>2 > 0 > P3 the three roots of p(z) = s3 - 2z2 - z + 1; and 

r? + r, - .1 
- - L - A * 1.22144.... . 1 (P2 - 2^) (P3 -' Vx) 

The proof will use complex variable methods to derive the value of the oi 
and linear algebra methods to derive the value of Tn . 

First, define a homomorphism, H9 on the free monoid on the letters {A, B, C} 
by #(C) = A, #(B) = AB, and #(A) = ABG, so that Tn equals the length of the 
string Pn(A). Following Rauzy [2], a convenient way to study this length is by 
letting M be the 3 x 3, 1-0, upper triangular matrix, defined by M(is j) = 1 if 
i + j > 4, and 0 otherwise. 

Following Rorres & Anton [3], define vectors 

v.x = (1, 0, 0)* and Mvn_l= vn = (xnS ynS sn)*, 

with * denoting vector transpose. Thus, xn = Tn9 and 

Yn = Mn + 1v_l = PDn + lP~lv~K 

with M = PDP~~l, a diagonal decomposition of M. Since the characteristic poly-
nomial of M is p(z)> some straightforward manipulation yields 
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3 
Xn = E °iri> 

i= 1 
for some constants c^, 1 < £ < 3. 

To find closed formulas for the ci , we study the generating function 

1 + z - z2 1 + z - z2-n*) = E T.Bi 3 
i-0 S3p(3 1) n ( a _ r . 1 ) 

i= 1 
Following Hagis [1], we employ the Residue Theorem to yield: 

1 f T{z)_ _ J_ f T(£0 . J^ ^ f r(a) , 
2iri Jcs zn + l ~ 2vi)c0 zn+l 2ri ^ 4 s" + 1 aZ 

where Cs is the circle of radius S about the origin, and CQ and C^ are circles 
of radius .1 around the origin and the r^1, respectively. By the triangle in-
equality for integrals, as S goes to infinity we have 

| 1 f T(z) 
• dz < 0(S~l) + 0. 

By the Cauchy Integral Formula for derivatives, we have 

1 C T(z) = T(n)(0) 
2TTiJCo zn + l nl 

Finally, by the Cauchy Integral Formula and some manipulations, we have 

1 f T(z) , i , P? + r, - 1 
: I — T T - ^ S = Residue at rTl = — — * r.n. 

2 TH, J Q S W + 1 * [| (r. - i^) ^ 

j * £ 
Combining the above, we have an alternate derivation of the preliminary formula 
for the Tn with closed expression for the ci . 

To complete the proof, simply observe that, for large n, 
Tn - o^v\ = ozr^ + c3r% = 0(\r3\)n •* 0. 

For small n, a calculator can be used to verify that an upper bound for the 
absolute value of the preceding expression is bounded by 1/2. The details are 
left to the reader. (In passing, we note that it is straightforward to prove 
that Tn - c^r^ is oscillating and monotone in opposite directions for even and 
odd n.) 
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Probably 

H-436 Proposed by Piero Filipponi, Rome, Italy 
(Vol. 27, no. 5, November 1989) 

For p an a r b i t r a r y prime number, i t i s known t h a t 
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(p - 1)1 = p - 1 (mod p), (p - 2)1 = 1 (mod p), 
and 

(p - 3)1 E (p - l)/2 (mod p). 

Let fcQ be the smallest value of an integer k for which kl > p. 
The numerical evidence turning out from computer experiments suggests that 

the probability that, for k varying within the interval [kQ, p - 3], kl reduced 
modulo p is either even or odd is 1/2. Can this conjecture be proved? 

Solution by Paul S. Bruckman, Edmonds, WA 

We will show that the proposer fs conjecture is equivalent to the proposi-
tion that the primes are somehow equally distributed, a concept which we will 
define more precisely later. First, we form the following short table of 
^0 = ^o(p)9 for the first few primes p: 

_£_ ^0 
2 3 
3 3 
5 3 
7 4 
11 4 

Clearly, k$ < p - 3 only if p > 7; suppose then that p > 1 henceforth. Now 
any such prime must be of one of the two forms: 4a + 1 or 4a + 3. Then 

(p - 3) ! = ~ (p - 1) = 2a or 2a + 1. 

Note that these are proper residues (mod p), that is, lie in the interval 
[1, p - 1]. We introduce the notation: f(p) = x to mean that f(p) = x (mod p), 
and x E [1, p - 1] . If we can expect that a prime is equally likely to be of 
either form, it would then follow that Pr[(p - 3)1 is even] = 1/2. This seems 
a plausible supposition, but is apparently an unproven proposition. 

We now tackle the general case. Consider (p - r - 1)1, where r is chosen 
so that r e [2, p - 1 - k0]. Then 

(p - r - 1)1 = (p - 2)l/(p - 2)(p - 3) ... (p - r) 

= l/(-l)'-l2 -3 • r, 
or 

(1) (p - r - 1)1 E (-l)r-1(2»!)-1 (mod p). 

Since g.c.d.(p, rl) = 1, there exists some integer b such that 

(2) p E b (mod 2(r!)). 
As b assumes all values in [1, 2(r!) - 1] with g.c.d.(&, r!) = 1, it is 

clear that any prime p must be of one of those forms [there are 2<|>(z0 such, 
where <fr is the Euler (totient) function]. Again, we may reasonably conjecture 
that each choice of b is equally probable, as p is randomly chosen. For 
example, for r = 3, there are 2(J>(3) = 4 choices: p = 1, 5, 7, or 11 (mod 12), 
and we may plausibly suppose that each form of p is equally likely. 

Now, there are infinitely many integers x such that congruence px = (-1)3" 
(mod rl) has solutions. However, if we restrict x to the interval (0, rl), 
then x = c is uniquely determined. Hence, 

(<jp - (-Dr)/rl E (-l)'-l(r!)-1 (mod p); 

therefore, from (1), we have: 

(3) (p - r - 1)1 E (op - (~Dr)/rl (mod p). 
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Moreover, 

(op - (-l)r)/r! > (p - l)/r! > 2 ( r ! ) ^ l ~ 1 * 2, 

a n d r t _» i "\ _i~ i 

(*p - (™DP)/P! < {r' ~r
l{p + - p - (p - DM 

< p - (2(rl) + 1 - 1)/P! = p - 2. 

This shows that (op - (-l)r)/rl is a proper residue (mod p) . We have proven 
the following result. 

Lemma 1: 

(4) (p - p - 1)1 = (op - (-l)p)/r!, P = 2, 3, ..., p - 1 - k0, 

where c is uniquely determined by c = (~l)pp~1 (mod P ! ) , 0 < c < rl. 

Now, given p, suppose we choose b such that 0 < b < rl , and that p = b (mod 
2(r!)), for some prime p. Also suppose that pf is prime, where p' E br (mod 
2(P!)), and bf = b + rl [hence, rl < br < 2(rl) and g.c.d.(Z?f, rl) = 1). Let a 
and o! denote the values determined from Lemma 1, with p and p', respectively. 
Thus, p = 2a(rl) + bs p! - 2a' (rl) + 2?f for some integers a and af. From Lemma 
1, 

Q = (~Drp~l = (-l)r/[2a(p!) + b] = (-l)^"1 (mod P ! ) ; 
also, 

<?' = (-DP(pO~1 = (-l)Tl[2a'(rl) + b + rl] = (-l)vb~l (mod rl) . 

Hence, cr E a (mod rl) . However, since 0 < c < P! and 0 < <5f < P!, it follows 
that £; = c. Also, from Lemma 1, 

ft iM - r r < ̂ r w . g[2af(r!) + £ + Pi] - (-1)" (pf - r - 1)1 = [epf - (~l)r]/rl = ^ 

_ c[2a(rl) + b] + (2a! - 2a)gp| - (-l)p 

P! + ° 
= [cp - (-1)P]/P! + (2a1 - 2a + l)c. 

Note that <? must be an odd number, since rl is even and rl divides (op- (-l)r). 
Hence, we have proven the following result. 

Lemma 2: Given primes p and pf, 

2 < r < min{(p - 1 - kQ) , (p' - 1 - Zc0') L 

where k^ = kQ(pr) and p ' = p + rl (mod 2 ( P ! ) ) , then (pr - r - 1) ! and (p - r - 1) ! 
are disparate. 

If it is true that each prime p of the form p = b (mod 2(P!)) is equally 
likely, as b varies over its 2<j)(r!) possible values, then it would follow from 
Lemma 2 that Prob[(p - r - 1)1 is even] = 1/2. Letting r vary over its possi-
ble values r = 2, 3"! . . . , p - 1 - kQ, we could then conclude that 

Prob(/c^ is even) = -, for k = k0, k0 + 1, . . . , p - 3 , 

where p is a random prime. Thus, given integers r > 2 and b e [1, 2(rl) - 1], 
with g.c.d.(£>, P!) = 1, the following results are equivalent, for random primes 
p: 
(a) Prob(p = b (mod 2(rl))) = i/2<$>(rl); 

(b) Prob[(p - r - 1)1 is even] = ~. 

The result conjectured in (a) seems plausible enough; however, as far as is 
known, it remains unproven. 
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