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1. I n t r o d u c t i o n 

Recently, C. Badea [1] showed that 

is irrational, where Ln is the usual Lucas number. We shall extend here his 
result to other series, with a direct proof, and we shall also give a deeper 
result, namely, 

X T— $ «(^)» w=Lth e = ±1-
n= 0 L2n 

Consider the sequence of integers {wn} defined by the recurrence relation 
(1.1) wn = pwn-i - qwn-2> 
where p > 1, q * 0 are integers with d = p2 - kq > 0. Roots of the character-
istic polynomial of (1.1) are 

p + /d p - /d 
a = ̂ —2 and 3 = ^—^ , 

where a + 3 = p5 a$ = q, and a - 3 = v5 > 0. Note that a > |$| and a > 1 since 
a2 > a|3| = \q\ ^ 1. 

Special cases of {wn} which interest us here are the generalized Fibonacci 
{Un} and Lucas {Vn} sequences defined by 

nn _ on 
(1.2) Un = a _ I and Vn = an + 3n. 

It is easily proved that {Un} and {Vn} are increasing sequences of natural 
numbers (for n > 1) and that 

Un ~ ̂ T ^ » Vn ~ «", U„ < Vn 

for all positive integers n. 
We also have 

(1 .3 ) U2n = UnVn9 

(1 .4 ) aUn - Un+l = - 3 n . 
The purpose of this paper is to establish the following result. 

Theorem: We assume that the above conditions are realized and that e is fixed 
(e = ±1). We then have: 

2) If id is irrational and |$| < 1, then 1, a, 6 are linearly independent 

1) 6 = LL 77— -̂s a n irrational number; 

over Q [or, in other words: 0 £ @(Sd)]. 
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Remark: When q = + 1 , i t i s q u i t e s i m p l e t o p r o v e t h a t | $ | < 1 and /d i s i r r a -
t i o n a l ™ More g e n e r a l l y , | $ | < 1 i f and o n l y i f p + q > - 1 and p - q > I [ s i n c e 
i n t h a t c a s e P ( l ) < 0 , P ( - l ) > 0 , w h e r e P i s t h e c h a r a c t e r i s t i c p o l y n o m i a l ] . 

2. Preliminary Lemmas 

Let {p } and'{^ } be two sequences of integers defined by 

Sn=tj^ = f> With,, VfW*. 
k= 0 ^ in 

By (1.3), we have 

(2.1) qn = tf2„+i. 

We need the following lemmas. 

fe=0 

Lemma 1: 
Vn 

Pn 
= e , + i ( e _ | ) 

Proof: The r e s u l t i s o b v i o u s when e = 1 . I n t h e o t h e r c a s e , s i n c e Vn i s i n -
c r e a s i n g , we h a v e : 

Pin Pln+l 
< e . 

%2n+l 

Lemma 2: pnqn_l - Pn-lqn = znU\n 

Proof: ^ - = Sn - £ n _ x = Pnqn~l " P " - l * " . H e n c e , by ( 2 . 1 ) and ( 1 . 3 ) , 

p J , - p ,q = 77— q a -, = 77— U9n + iUon = enU%n. 

Lemma 3: F o r a l l p o s i t i v e i n t e g e r s n and fc, we h a v e 

U ̂ n+l / 1 \fe 
Fo n + k + 1 \ Vo« + 1 

Proof: Using (1.3), we can show that 

and s o 

U^n + l } | V^n + i ~ ^ 2 n + A : + 1 ~ ^ 2 n + k + 1 

i = 1 

C/9n + l 1 / 1 \k 
. A < _ < 

7 2" + f c + 1 " n v2n+i 
i- 1 z 

V ^ n + l ) 

since Fn is increasing. 

Lemma 4: lim|^ 6 - p \ = —---77, where {pn} and {qn} are defined as above. 

(e - ^ ) = e " + i (e - sn) 

c.n + k + 1 j ^ c-k 

Proof: rn + l| 

.« + ! 

fc=0 ^ 2 n + f e + 1 fc = 0 ^ 2 n + f e + 1 
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Hence, Fkn 
1 -7 n n 1 - V n - V 

k=0 v2n + k + l k=0 

~ ekU9n+i 
wi th i?n = Z 7 \ • 

fc=l i / 2 n + k + 1 

However, by Lemma 3 , we have 

Iff 1 < V y 2 " + 1 < V ( l 

so t h a t l im i?„ = 0 and 

C^U^n + l Ujn + l 

V2 n + fc + 1 Vnn + 1 

- ) k . 1 
/ F 2 n + 1 " 1 

+ Rn> 

lim a 6 - p = lim 77 = -. 
n+cJ n ^n ' n̂ co ^ 2

n + 1 a " 3 

3. Proof of the First Part of the Theorem 

Recall that a convergent sequence of integers is stationary, and suppose 
that 0 = a/b {a and b integers, b > 0) . By Lemma 4, the sequence of positive 
integers \qna - pnb\ tends to the limit c = b I (a - $) . When (a - 3) is irra-
tional, this is clearly impossible. In the other case we have, for all large 
n, since the sequence is stationary, 

a = e*+ 1k f - p„) • ~ g > 
and so, for all large n, 

(3-1) qn f - pn = ^ g . 

Using (3.1) for n and n - 1, we have 

By (2.1), (1.3), and Lemma 2, we obtain 

and so 

J. 
a -

^2" = ^ ^ ( ^ 2 " " * ) • 

It follows from this and (1.2) that 

a2" - B2" = a2" + 62" - e or 62" = e/2, 

for all large n. This is clearly impossible, since 

l im | 3 | 2 " e {0, 1, +«>}. 
n -> +00 

This concludes the proof . 
Examples: 

a ) £ 7 — i-s i r r a t i o n a l ( t h e case e = 1 i s B a d e a ? s ) . 
n= 0 ̂ 2" 

b) 2 ~~^ ^s irrational (the case e = 1 was discovered by Golomb [2]). 
n=0 22 + 1 
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4. Proof of the Second Part of the Theorem 

Suppose that we can find a relation 

(4.1) k0 + kid + k2d = 0, ki e Q. 

We can limit ourselves to the case of ^ e Z. Replacing n by 2 n + 1 in (1.4) and 
putting xn = U2n+i +1, we have 

(4.2) lim(a<?n - xn) = 0, 
n ->oo 

since |3| < 1. 
By (4.1), it follows that 

k0qn + kl(qna - xn) + k2(qnQ - pn) + klxn + k2pn = 0 

or, for all positive integers n, 

M<7n a " xn) + k2(qnQ - pn) € Z. 
Hence, by Lemma 1, 

k!Bn + Hqna - xn) + k2\q„Q - p „ | e Z. 
Using Lemma 4 and (4.2), it follows that 

k 
llm(feie» + 1(?„o - xn) + k2\qnQ - pn\) = — 2 _ e Z. 
n>oo u P 

Thus, we have k2 = 0 (since a - 3 is irrational) and, by (4.1), 

kx = &0 = 0, 

since a = (p + vd)/2 is irrational. This concludes the proof. 

Example: ]T i ^ - ^ ( / 5 ) , 
«= 0 ̂ 2* 

Corollary: Let r be a positive integer. With the hypotheses of the theorem, we 
have: 

1) ®v = z2 Tr ^s a n irrational number; 
n = 0 Vr>2n 

2) If i/5 is irrational and |$| < 1> then 1, a, Qr are linearly independent 
over Q, 

Define the sequence {V^} by 

K = Vm = (ap)» + (6r)". 

{V^} is the Lucas generalized sequence, with real roots ap and 32% which is 
associated with the recurrence 

K = («r + 8') (/„'_! - a'BX'-2 = ^ B'-i " ?r^'-2-
We can apply the result of the Theorem to the sequence {F^n}. In fact, we 

have 
Vr > Vi = p > I, |g|r < 1 (since | 31 < 1) 

and the discriminant dr of the recurrence is 

d> = Vl - kqv = (ar - 3 r ) 2 = (a - 3 ) 2 ^ . 

From this, we have 

/d7 = (a - $)Ur = i/S/r. 

Thus, /a is an irrational number because is. 
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