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The binary number system lends itself to unrestricted ordered partitions,
as indicated in Table 1.

TABLE 1. The Binary Case

Binary Associated

n Representation k  Partition of k
1 1 1 1

2 10 2 2

3 11 2 11

4 100 3 3

5 101 3 21

6 110 3 12

7 111 3 111

8 1000 4 4

9 1001 4 31
10 1010 4 22
11 1011 4 211
12 1100 4 13
13 1101 4 121
14 1110 4 112
15 1111 4 1111
16 10000 5 8

Note that the partitioms of k = 4, ranging from 4 to 1111, are in one-to-one

correspondence with the integers from 8 to 15, for a total of 8 partitionms.
Similarly, there are 16 partitions of 5, 32 of 6, and generally, 2k-1
partitions of k. These are in one-to one correspondence with the binary
representations of length k.

It is well known (Zeckendorf [1]) that the Fibonacci numbers

Fl=]_,F2=l,F3=2,F|+=3,F5=5,F6=8,F7=13, e oo

serve as a basis for another zero-one number system, depending on unique sums
of nonconsecutive Fibonacci numbers. These sums are often called Zeckendorf
representations (see Table 2). The partitions of k that appear in this scheme
are those in which only the last term can equal 1; that is,

k=r +r)+ ... +0r;, where r; 2 2 for 2 < j and r; = 1.

Table 2 suggests that, for any k, the number of partitions in which 1 is
allowed only in the last place is the Fibonacci number Fj (e.g., 34 - 21 =13
partitions of 7, ranging from 7 to 2221). This is nothing new, since the
number of zero-one sequences of length k beginning with 1 and having no two
consecutive 1's is well known to be Fj. It is less well known that these zero-
one sequences correspond to partitions.
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TABLE 2. The Zeckendorf Case

Zeckendorf Zero-One Associated
n Representation Representation k Partition of k
1 1 1 1 1
2 2 10 2 2
3 3 100 3 3
4 3+1 101 3 21
5 5 1000 4 4
6 5+ 1 1001 4 31
7 5+ 2 1010 4 22
8 8 10000 5 5
21 21 1000000 7 7
22 21 + 1 1000001 7 61
23 21 + 2 1000010 7 52
24 21 + 3 1000100 7 43
25 21 +3 + 1 1000101 7 421
32 21 + 8 + 3 1010100 7 223
33 21 + 8+ 3 +1 1010101 7 2221
34 34 10000000 8 8

Here is a summary of the observations from Tables 1 and 2. The first-order
recurrence sequence 1, 2, 4, 8, ... serves as a basis for unrestricted parti-
tions, and the second-order recurrence sequence 1, 2, 3, 5, 8, ... serves as a
basis for somewhat restricted partitionms.

The purpose of this article is to extend these results to higher-order
sequences, their zero-one number systems, and associated partitions. To this
end, and for the remainder of the article, let m be an arbitrary fixed integer
greater than 2.

Define a sequence {s;} inductively as follows:

s; =1 for 2 =1, 2, ..., m,

S; = 8;-1 t8;-p fori=m+ 1, m+ 2, ... .

Theorem 1: Every positive integer n is uniquely a sum

sy *8;, + ... +s8; , where it = 1y 2 m whenever t > u.

Proof: The first m positive integers are one-term sums. Suppose, for Azm+ 1,

that the statement of the theorem holds for all n<h - 1. Let Z; be the great-

est 7 for which s; < h. If h - s; = 0, then the required sum is s;, itself.
Otherwise, & - s, is, by the induction hypothesis, uniquely a sum s;, + ---

+ 54, of the required sort, so that

(1) h = s,

Suppose ©; — ©p £ m - 1. Then

+ 8i, + .. + Siu'

h2s; +84, 28, T 85 -pel= 84 +1s

contrary to our choice of 7; as the greatest ¢ for which & 2 s;.

Therefore, the sum in (1) has 7¢ - 7, = m whenever ¢ > u, and this sum is
clearly unique with respect to this property. By the principle of mathematical
induction, the proof of the theorem is finished.
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Theorem 1 shows that the sequence {s;} serves as a basis for a "skip m - ¢
number system" analogous to the Zeckendorf, or Fibonacci, number system. The
latter could be called the "skip 1 number system."

Examples: 1In the skip 1 system:

31 =21 +8+ 2 = 1010010
32 =21+8+3 = 1010100
33 =21+8+ 3+ 1=1010101

34 = 34 = 1000000
In the skip 2 system:

57 = 41 + 13 + 3 = 1001000100
58 = 41 + 13 + 4 = 1001001000
59 = 41 + 13 + 4 + 1 = 1001001001
60 = 60 = 10000000000

We turn now to partitions. For a quick glimpse of what is coming, notice
that the zero-one representations for 57, 58, and 59, just above, lend themselves
naturally to the partitions 343, 334, and 3331 of the integer 10.

In general, in the m - 1 system, for a given positive integer k, the digit
one occurs at and only at places <y, %9, ..., 7,, Where k = 8¢, * 87, + e+
s, » and each pair of ones are separated by at least m - 1 zeros; therefore, to
each k there is a unique ordered v-tuple of integers r; defined by

1]
i

v

]

{Pl il’ if7)==l,
(2) r, =1y = iysp foru=1,2, ..., v -1, if v > 1 and s; 2m,
r, =1y = iy for u =1, 2, ..., v - 1and r, = 7,,

if v > 1 and §; =m-~= 1.

We summarize these observations in Theorem 2.

Theorem 2: Let k be a positive integer, let Sy = {sk, 8, + 1, iy 8341 - 11},
and let P, be the set of partitiomns r;, rp, ..., r, of k that satisfy r, > 1
and r; 2 m for 27=1, 2, ..., m= 1. Then equations (2) define a one-to-one
correspondence between S; and P, so that the number p(k) of partitions in Py
18 8Sg-pm-1-

Now for any positive integer k, and for j = 1, 2, ..., m, let p(k, J) be
the number of partitions r;, ry, ..., r, of k for which r, = J and r; 2m for
1=1,2, ..., v = 1. As in Theorem 2, let p(k) be the number of partitions of
k for which r, 2 1 and r; 2m for ¢ = 1, 2, ..., v - 1. Let g(k) be the number
of partitions of k for which r; zm for all indices 7 =1, 2, ..., v = 1, v.
Lemma 1: 1 if k=4 <m,

p(k, §) =<
‘ 0 if k <m, j <m, and k = J.

Proof: For any given k <'m, the partition of k is the number %k by itself, 'so
that p(k, k) -= 1. Clearly, p(k, ) = 0 for k # j since, in this case, no par-
tition of the form described is possible.

Lemma 2: Suppose 7 < j < m. Then p(k, §) = p(k -1, j) + p(k = m, j) for k =
m+ 1, m+ 2, .

Proof: Assume k > m + 1. Each of the p(k - 1, j) partitions rj,ro, «eus Py_1s J
of k - 1 yields a partition r; + 1, 25, ..., r,_1, J of k. "Moreover, r; + 1 =
m + 1, so that every partition of k having first term > m + 1 corresponds in
this manner to a partition of k - 1.

Each of the p(k - m, j) partitions »,, rz, ..., g of k — m yields a parti-
tion m, »y, r3, ..., § of k. Moreover, every partition of X having first term
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m corresponds in this manner to a partition of k - m.
Since p(k, J) counts partitions having first term > m, a proof that

p(k, §) =pk -1, j) + ptk - m, §)
is finished.
Theorem 3: Suppose k is a positive integer. The number ¢g(k) of partitions
71, Py, «.., v, of k having r;, 2m for ¢ = 1, 2, ..., v is given by the m®h-
order linear recurrence g(k) = g(k —= 1) + gtk = m) for k =m+ 1, m+ 2, ...,
where ¢g(j) = 0 for j =1, 2, ..., m -1, and g(m) = 1.

Proof: The assertion follows directly from Lemma 2, since

m=1
q(k) = pk) - 3 p(ks 9.
Ji=1
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