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1. Permutations 

We write a -permutation p of {1, 2, . . . , n} in the form p(l)p(2) . . .p(n) . An 
inversion of the permutation p(l)p(2)..,p(n) is a pair (p(i), p(j)) such that 
p(i) > p(j) and i < j . We let i(p) denote the number of inversions of p. For 
example, there are four inversions in the permutation p = 2431: (2, 1), (3, 1), 
(4, 1), (4, 3); hence, i(p) = 4. 

For applications to other areas (computer science, chemistry, physics), it 
is useful to note that the number of inversions of the permutation 
p(l)p(2)...p(n) is the same as the minimum number of interchanges of adjacent 
numbers required to restore p(l)p(2)...p(n) to its natural order 12...n. 

2. Definitions 

Let K be a field of characteristic 0, K[q] the polynomial ring, and R a 
commutative ring with identity containing K[q] . Let A = (a^j) be an nxn 
matrix with entries in R. The ordinary determinant of A is given by the 
familiar formula [3, p. 14] 

detW) = I] (-D^P)alp(1)a2p(2)...anp(n), 

where the summation is extended over all permutations p, and i(p) is the number 
of inversions of the permutation p. The q-determinant of A is defined by the 
same expression with (-1) replaced by the indeterminate q: 

detq(A) = £ <7i(p)alp(1)a2p(2)...a„p(n). 

This makes q a marker for the number of inversions of a permutation. 
Now, just as one can approach the subject of determinants from the point of 

view of Grassmann algebras, we can approach the subject of ^-determinants from 
the point of view of ^-Grassmann algebras. A q-Grassmann algebra (cf. [6]) is 
the associative Z[^]-algebra generated by #]_, XQ_, ..., xn, satisfying the 
relations #? = 0 and XjX£ = qx^Xj, if i < j . Clearly, in this algebra, every 
monomial can be written in the normal form 

oxixi' • 'xi 
1 2 r 

where c is in K[q] and i\ < i2
 < •° ' < ir * Hence, in normal form we have 

(allxl + al2x2 + ... + alnxn)(a2lxl + a22x2 + ... + a2nxn) 
... (anlxl + an2x2 + ... + annxn) = detq(aij)xlx2xr ..xn„ 
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38 Properties 

Theorem 1: 
(1) The ̂ -determinant is a multilinear function of the rows and columns. 
(2) The ̂ -determinant of a block triangular matrix is the product of the q-

determinants of the diagonal blocks. 
(3) detq(A) = detq(AT), .where AT is the transpose of A. 
(4) (Expansion Theorem) Let A^j denote the (£, j)-minor of A. Then, 

detq(A) = alldetq(All) + qa2ldetq(Azl) + q2a3ldetq(A3l) + . .. 

+ ^n"1anldetq(i4nl) 

= anndetq(^nn) + W(n-1)ndetq(i4(n_1)n) + ... + qn-lalndetq(Aln) 

= alldetq(All) + qa12detq(^12) + ^2ax3detq(Al 3) + ... 

+ ^-lalndet,(^ln) 

= anndet(?(lnn) + ^a^^det^C^..^) + ... + qn~"lanldetq{Anl) . 

Proof: Parts (1) and (2) are obvious; (3) follows from i(p) = i{p~l). ;The four 
equalities in (4) represent four ways of sorting the terms of detq{A) * They 
follow from the ^-Grassmann algebra formulation of the ^-determinants. [The 
last two equalities also follow from the first two and part (3).] Q„E*DS 

4. Fibonacci Polynomials 

There are several related polynomial sequences all named Fibonacci polyno-
mials. Here by Fibonacci polynomials we mean the polynomials Riordan called 
Ln{x) in his book [4, pp. 182-83], They were later reintroduced by Doman and 
Williams in [1]. It is interesting to note that Doman and Williams were led to 
the definition of these - polynomials from a study of a one-dimensional Ising 
chain in physics. 

Fibonacci polynomials Fn(q) are defined by the recurrence relation 

and the initial conditions F$(q) = 0, Fi(q) = 1- They are, in fact, expressible 
a s h •• • 

Fn + l(q) - E (" ":V. 
i = 0 x u ; 

where h is the integer part of n/2 (for n > 0). As we shall show in the fol-
lowing,. there are also the -generating functions of the number of inversions of 
permutations p. satisfying \i - p(i)\ < 2, for all i„ 

5. Generating Functions 

. In t̂his section, we. derive several generating functions of the number of 
inversions '-of - permutations by applying ^-determinants to (0, 1)-matrices *•• We' 
let K be the rational field, and we use the abbreviations: 

[n] = (1 + q + q2 + ••• + qn~l), 

[n]\ - [l][2][3]...[n]. 

Theorem 2: The generating functions of the number of .inversions of permuta-
tions of {1, 2, ..., n] is In]1 ([5, p. 21]). 

Proof: Let Jn denote the nxn matrix whose every entry is equal to 1, By the 
Expansion Theorem, '-.. -•• -
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£<7i(p) = detq(Jn) = (1 + q + q1 + ... + qn~l)detq (Jn _x) = [n] ! 

Here the summation is taken over all permutations. Q.E.D. 

Theorem 3: The generating functions of the number of inversions of permuta-
tions of {1, 2, ..., n] satisfying (i - p(i)) < r, for all i, where r < n, is 
[r]n'r[r]l. 
Proof: Let Kn(r) = (k^) denote the n*n matrix defined by 

'l, if i - j < r, 

\Q, otherwise. 

Again, by the Expansion Theorem, 

£ <?i(P) = detq(Kn(r)) = (1 + q + q2 + ... + q'-^detqiK^r)) 
i-pU)<r = [r]n-rdetq(Kr(r)) = [r]n"P[r]! Q.E.D. 

Theorem 4: The generating functions of the number of inversions of permuta-
tions of {1, 2, ..., n] satisfying \i - p(i)| < 2, for all i, is the Fibonacci 
polynomial Fn+l(q). 

Proof: Let Ln = (/̂ j) denote the n*n matrix defined by 

1, if \i - j \ < 2, 

{0, otherwise. 

The desired generating function is then 

E qiiV) = det^(Ln). 
|i-p(i)| <2 

By the Expansion Theorem, det^(Ln) satisfies the recurrence 

det^(Ln+1) = det^(Ln) + qdetq{Ln.l) 9 

and the initial conditions det^(L^) = 1, detq(L2) = 1 + q. Hence, the generat-
ing function is Fn+i(q). Q.E.D. 

We note that, since Fn+i(l) = Fn+i is the Fibonacci number, the number of 
permutations satisfying \i - p(i) | < 1 is Fn+i (see Example 4.7.7 of [5] and 
the related references given there). 

Now, call A < By if A = (a^-), B = (b^-j) are matrices with rational entries 
and a^j < b^j for all i, j. Similarly, define f(q) ^ g{q), if f(q)> $(q) a r e 

polynomials with rational coefficients and the coefficient of every term q^ in 
f(q) is less than or equal to the coefficient of the corresponding term q^ in 
g(q). It is easy to see that if A and B are (0, 1)-matrices and A < B, then 
det (A) < detq(B) and, therefore, 0 < det^Ol) - detq(B). 

Corollary 1: The generating function of the number of inversions of permuta-
tions of {1, 2, ..., n} such that £ - p(£) ̂  v for some £ is given by 

[n]l - [r]n~r[r]l 

When v = 2, the generating function is 

[n]! - [2]""1 = [n]l - (1 + t?)*-!, 

and when r = n - 1, it is 

[n]l - [n - l][n - 1]! = qn~l[n - 1]! 

which is obvious from the given condition. 
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Corollary 2: The generating function of the number of inversions of permuta-
tions of {1, 2, . . . , n} such that \i - p(i)\ >2 for some i is given by 

[n]l - Fn+l(q). 

Corollary 3: Let r be >2. The generating function of the number of inver-
sions of permutations of {1, 2, . .., n} such that (i - p(i)) < r for all i and 
\i - p(i)| ^ 2 for some i is given by 

[r]n~r[r]l - *n+1(<7). 

The special case r = 2 of Corollary 3 is of particular interest. It says 
the generating function of the number of inversions of permutations of {1, 2, 
. .., n} such that (i - p{i)) < 2 for all r and \i - p(i)| > 2 for some £ is 
given by 

O M ) - ' - W # ^ { ( " ; , ) - ( " ; V 
where i t is understood that (^) = 0 if r < i . 

6. Remarks 

From a preprint ("Quantum Deformation of Flag Schemes and Grassmann Schemes 
I: A q-Deformation of the Shape-Algebra for GL(n)" by Earl Taft & Jacob Towber) 
which we received from Professor Earl Taft recently, we learned that another q-
analogue of determinant (essentially replacing q by -q~l) has been developed by 
Yu I. Manin. 

We should also point out that the evaluation of a ̂ -determinant is in gen-
eral difficult, for the evaluation of even one of its specializations {q = 1), 
the permanent, is difficult (see [2]). 
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