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PROBLEMS PROPOSED IN THIS ISSUE 

B-455 Proposed by T. V. Padma Kumar, Trivandrum, South India 

Charac te r i ze5 as comple te ly as p o s s i b l e , a l l "Magic Squares" of the form 
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s u b j e c t to the fo l lowing c o n s t r a i n t s : 
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Rows, columns, and diagonals have the same sum 

+ au + d-i + du = h0 +-£>q + e9 + c, = a, + b, 
+ cu + du 

+ ch + do, + du = c, + d7 + a? + bu 

+ au + do 

ah + b3 + bk- K 
a2 + dx + d2 = K 
bu + Co + cu = K 

?2 + o-^ = b 
+ bu + cL = K 
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| + b2 + a2 + b2 

2 + b2 

2 ^ Dl 

a\ + a\ + d2 + d\ = b\ -v c\ + b2 + c2 

c2 + c\ 

c2 + c^ + d\ + d^ « a\ + b\ + a-

a2 + a2. + al + a2, + b2 + b2. + b^ + b^ 

c\ + c\+ c\ + c2 + d\ + d\ + d2+ d2 

al + bl + C l + dl * a2 + b2 + C2 + d2 

22 + b\ + C2 + d\ + a2 + b\ + C2 + d2 - M 

b2 + o3 b, + o, + d0 + a3 
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H-456 Proposed by David Singmaster, Polytechnic of the South Bank, 
London, England 

Among the Fibonacci numbers, Fn , it is known that: 0, 1, 144 are the only 
squares; 0, 1, 8 are the only cubes; 0, 1, 3, 21, 55 are the only triangular 
numbers, (See Luo Ming's article in The Fibonacci Quarterly 27.2 [May 1989]: 
98-108.) 

A. Let p{m) be a polynomial of degree at least 2 in m. Is it true that 
p{m) = Fn has only finitely many solutions? 

B. If we replace Fn by an arbitrary recurrent sequence /„ , we cannot 
expect a similar results since fn can easily be a polynomial in n. 
Even if we assume the auxiliary equation of our recurrence has no 
repeated roots, we still cannot expect such a result. For example, if 

fn = 6/n-l " 8fn-2> f0 = 25 fi = 6, 
then 

/„ - 2» + 4", 

so every fn is of the form p(m) = m2- + m . What restriction(s) on fn 
is(are) needed to make fn = p(m) have only finitely many solutions? 

Comments: The results quoted have been difficult to establish, so Part A is 
likely to be quite hard and, hence, Part B may well be extremely hard. 

H-457 Proposed by Piero Filipponi, Fond. U. Bordoni, Rome, Italy 

Let f(N) denote the number of addends in the Zeckendorf decomposition of N, 
The numerical evidence resulting from a computer experiment suggests the 
following two conjectures. Can they be proved? 

Conjecture 1: For given positive integers k and n, there exists a positive in-
teger Wj, (depending on k) such that f(kFn) has a constant value for n > nk* 

For example, 

24Fn = Fn+6 + Fn+3 + Fn+l + Fn_h + Fn_6 for n > 8. 

By inspection, we see that n\ - 1, nk = 2 for k = 2 or 3, n^ = 4 and nk = 5 for 
5 < k < 8. 

Conjecture 2: For k > 6, let us define: 

(i) u, the subscript of the smallest odd-subscripted Lucas number such that 
k < Lu, 
(ii) v, the subscript of the largest Fibonacci number such that k > Fv + Fv-§. 

Then, n^ = max(u, v). 

H-458 Proposed by Paul Bruckman, Edmonds, WA 

Given an i n t e g e r m > 0 and a sequence of n a t u r a l numbers aQ, a-, , . . . , am? 
form the p e r i o d i c s imple cont inued f r a c t i o n ( s . c . f . ) given by: 

(1) 6 = [ a 0 ; a 1 ? a 2 , . . . , a 2 , a x , 2 a Q ] . 
The period is symmetric, except for the final term 2aQ, and may or may not con-
tain a central term [that is, am occurs either once or twice in (1)]. Evaluate 
9 in terms of nonperiodic s.c.f.fs. 
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SOLUTIONS 

No Doubt 

H-437 Proposed by L. Kuipers, Sierre, Switzerland 
(Vol. 28, no. 1, February 1990) 

Let x9 y, n be N a t u r a l numbers, where n i s odd. I f 

(*) Ln/Ln + 2 < xl}j < Ln + l/Ln + 3> show t h a t y > ( l /5 )L„ + i f . 

Are t h e r e f r a c t i o n s , x/y9 s a t i s f y i n g (*) for which y < Ln + L^7 

Solution by Russell Jay Hendel & Sandra A. Monteferrante, Bowling College, 
Oakdale, NY 

We prove that the rational number with smallest denominator satisfying (*) 
is Fn+i/Fn+^. An easy induction then shows that 5Fn+^ > Ln + ̂ 9 from which the 
first assertion readily follows. For n > 1, Fn + 3 < Ln + 2 < Fn + L±. This answers 
the second question in the affirmative. 

Proof: If n = 1, an inspection shows that 1/3 is the rational number with the 
smallest denominator between 1/4 and 3/7. We therefore assume n > 2. 

First 

Ln/Ln+1 = 1/(1 + Ln^lLn). 

Hence, the continued fraction expansion of Ln is [0; 1, . .., 1, 3] with n - 1 
ones. Similarly, 

Ln/Ln+Z = 1/(2 + Ln„llLn) 

and, therefore, Ln/Ln+2 = [0; 2, 1, ..., 1, 3] with n - 2 ones. 
Next, let z be a real variable and fix an odd n. Define 

P0 = 0, QQ = 1, P1 = 1, Q-L = 2, Pi = Fi3 Qi = Fi+2 (for 2 < i < n - 1) , 

Pn(z) = zFn^l + Fn_2, and Qn(z) = zFn + 1 + Fn. 

Define the function f(z) = Pn(z)IQn(z) = [0; 2, 1, . .., 1, s] with n - 2 ones. 
Then /(3) = Ln/Ln+2, /(4/3) = Ln+1/Ln+3, and /( ) maps the open interval, 4/3 < 
z < 3 onto the open interval (Ln/Ln+25 Ln+i/Ln+$). 

It follows that, if f(z) is a rational inside the interval (/(3) , /(4/3)), 
then its continued fraction must begin [0; 2, 1, ..., 1, 2, . . . ] . Clearly, 
among all such continued fractions, f{2) has the smallest denominator. Since 

f(2) = P„(2)/en(2) = F„+1/F„ + 3, 

the proof i s comple te . 
The above a n a l y s i s can be g e n e r a l i z e d to d e s c r i b e o t h e r r a t i o n a l s wi th 

smal l denomina tors . For example: Fm/Fm + 2
 = [0> 2, 1, . . . , 1, 2] wi th m - 3 

ones where //? i s an i n t e g e r b igge r than 3." I t fo l lows t h a t Fm/Fm + 2
 i s always i n 

the open i n t e r v a l (Ln/Ln+2, Ln+i/Ln+3) , i f m > n + 1. In p a r t i c u l a r , Fm/Fm + 2 
s a t i s f i e s (*) wi th Fm + 2 < Ln + i{, ±£n+l<m<n+3. 

Also solved by P. Bruckman, R. Andre-Jeannin, and the proposer. 

A Fib on ace - ions I n t e g r a l 

H-438 Proposed by H.-J, Seiffert, Berlin, Germany 
(Vol. 28, no. 1, February 1990) 
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Define the F ibonacc i polynomials by 
FQ(x) = 0, Fl(x) = 1, Fn(x) = xFn_1(x) + Fn_2(x), for n > 2. 

Show t h a t , for a l l odd i n t e g e r s n > 3 , 

f + ° ° dx 7T/1 . TT\ 
I = —(1 + 1/cos - . 

Solution by Paul S. Bruckman, Edmonds, WA 

As i s r e a d i l y e s t a b l i s h e d , 

(1) Fn(x) = u"u ~ V
v
n
9 n = o, 1, 2S . . . , 

where 

(2) u = u(x) = %(x + / x 2 + 4 ) , y = y(a;) = %(ar - / ^ 2 + 4 ) . 
Let 

(3) In = I pff^> for odd n > 3 . 

Note t h a t Fn{x) i s an even polynomial ( for odd n ) ; hence , 

(4) ^ 2 f w 
We may make the substitution: x = 2 sinh 0 in (4); then u(#) = e 9 , y(#) = -e~Q , 
F„ (x) = cosh 0/cosh n0, and dx = 2 cosh 0 <f 0. Therefore, 

(5) 1 = 4 1 cosh20/cosh nQ dQ. 
Jo 

Since n > 3, we see that (5) is well defined; indeed, the integrand may be ex-
panded into a uniformly convergent series. We do so, as follows: 

4 cosh20/cosh nQ = 2(e2Q + 2 + e~2Q)/(en6 + e - n e ) 

I 1 + e~2nQ j 

= 2e(2-^e(l + 2e"2e + g^6) Y, (-l)ke~2nkQ , 
k = o 

Hence, In is equal to: 
f °°  

k = o ' Jo 

= 2 ^ (-Dk[(n(2k + 1) - 2)"1 + 2(n(2k + l))"1 + (n(2k + 1) + 2)"1], 
k = Q 

or, after some simplification: 

(6) in-$±(-Dk/(2k + 1 ) + 4 n £ ( ; i ) f c ( ; ; t i } , 
n fe = o k = o (2k + l)2n2 - 4 

The first series in (6) is the well-known Leibnitz series for %TT. 
The second series in (6) may be evaluated from the Mittag-Leffler formula 

(see [1]): 

(7) IT sec ITS = > - v ^, provided (z - \) t Z. 
k = o (k + % ) 2 - s2 
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Setting z = l/n in (7), we obtain: 

7T sec n/n = 4n2 ]T (- l ) k (2j<- + 1) t(2fc + l ) 2 n 2 - 4 ] " 1 . 
k = 0 

Comparing this with the second series in (6) yields the desired resul t : 

In = ir/n(l + sec i\/n). 

NOTE: By similar methods, we may prove the following resul t : 

£ x dx/Fn(x) = TT/n(tan i\/2n + tan 3ir/2n) , if n > 4 is even. 

Reference 

1. Louis L. Pennisi. Elements of Complex Variables, 2nd ed, Urbana: University 
of I l l i no i s , 1976, p. 336= 

Also solved by P. Byrd, R. Andre-Jeannin, Y. H. Kwong, N. A, Volodin, and 
the proposer. 

Another Lucas Congruence 

H-439 Proposed by Richard Andre-Jeannin, ENIS BP W, Tunisia 
(Vol. 28, no. 1, February 1990) 

Let p be a prime number (p * 2) and m a Natural number. Show that 

L2pm + Lhvm + . . . + L(p _ 1 ) p 7?7 = 0 (mod p m + 1 ) . 

Solution by the proposer 

From the formula: , , - — 

ap + bp = (a + 2)) (-1) 2 (afc) 2 + E(-l)k-Hab)k-l(ap-2k + l + bp-2k+l) 
k= 1 

we get, when taking a = ap \ b = 3pr% 

p m + 1 p w L ( p - i ) p ' 7 1 C p - 3 ) p ^ 2pff' J 

hence: 

(i) v-i " V = VIVDP- + ••• + L 2 P
J -

But it is known (see Jarden, Recurving Sequences, p. Ill) that: 

(2) Lpm + l = Lp„, (mod p^ + 1) 

and thus (1) becomes: 

(3) 0 = Lpm[\p_l)p„ + ... + L2 pJ (mod P- + 1). 

Now we have: gcd(p, £pm) = 1 [since, by (2): Lpm s 1 (mod p ) ] . Thus, (3) shows 
that 

AZso solved by P. Bruckman and G. Wulczyn. 

A Square Product 

H-440 Proposed by T. V. Padma Kumar, Trivandrum, South India 
(Vol. 28, no. 2, May 1990) 

NOTE: This is the same as H-448. 
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If ax 5 #2* . . . 9 am, n are positive integers such that n > a\9 a2-> . . . , am 

and 0(n) = w and a^ is relatively prime to n for i = 1, 2, 3, . .., m, prove 
m , 2 

I! ai ) E ! (mod n ) • 
i = 1 / 

Solution by Sahib Singh, Clarion University of Pennsylvania, Clarion, PA 
Consider the ring (Zn, +n, .„) with Zn = {0,1, 2, ..., (n - 1)}, where the 

operations are addition modulo n and multiplication modulo n, respectively. 
Under this hypothesis, the given members; a^, a2i . .., am are precisely the 
members of the multiplicative group of units of this ring. These m units can 
be partitioned into two classes. The first class consists of those members a^ 
(as well as at) such that 

aiat = 1 (mod ri), where i *'£;< 1 < 'i, t < m. 

The second class contains the remaining members a3- that satisfy oA = 1 (mod n) . 
Without loss of generality, we can name the members of the first class as 

a1? a2> . ••> cck and the members of the second class as a^+^s #fc + 2» •••>
 am> 

(Note that it is possible that the first class is empty, so that k = 0: this 
can be verified when n = 8.) 

Consequently, 

I ! at = ( ft ai Jtefc + i * ak + 2 * • • . • aj, 
i = 1 ^ = 1 / 

Since n ^ = 1 a i = 1 (mod n ) , we conclude t h a t : 
"J \ 2 / fe \ 2 

. n a i ) = L n a i ) (afe+i• a ^ + 2 • •-•.• a J E x (mod n ) e 

Also solved by P . Bruckman, B. Prielipp, and L. Somer. 

Edi tor ia l Notes : 

1. Lawrence Somer!s name was inadvertently omitted as a solver of H-424. 

2. A number of readers pointed out that H-451 is the same as B-643. 

3. Paul Bruckman's name was inadvertently omitted as a solver of H-434. 
He mentioned that line one of the solution should read "[c^r™ + % ] " and that 
the value reported for the approximation of c^ should be 1.22041 not 1.22144. 

288 


