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Let us consider the recurrence relation

(1) n3u, - (34n3 - 51n2 + 27n = S)u,-; + 0 = 1)3u,_5 = 0.

Apery has proved that for (ugp, u;) = (1, 5) all of the u,'s are integers, and
it is proved in [1] and [2] that, if all the numbers of a sequence satisfying
(1) are integers, then (ug, u;) = A(l, 5), where X is an integer. We give here

a generalization of this result, with a simple proof, and applications to
Apery's numbers as well as to the recurrence relation

(2) Ly-1Fpuy = S5FyFy 1Fpp-1Upn-1 = Fy_1lnuy-p = 0,

where F,, L, are the usual Fibonacci and Lucas numbers.

1. The Main Result

Let {a,}, {bn} be two sequences of rational numbers with {u,} the sequence
defined by (up, u;) and the recurrence relation

(3) U, = QuUp-1 T byliy-2, 1 = 2.

We then have two results.

Theorem 1: Suppose that

(4) a) For all integers n 2 2, b, = 0.

n
(5) b) There exists a real number P such that lim I] Ibkl = P.
nrw oy

Then the recurrence relation (3) has two linearly independent integer solutions
only if lbn! = 1 for all large n.

THeorem 2: Suppose that

(6) a) For alln 22, b, # 0 and |bn| = 1 for all large n.
(7) b) For all n = 2, a, = 0 and lim|a,| = a.
N>

Then relation (3) has two linearly independent integer solutions only if a, = a
for all large n, where g is an integer different from zero.

Remark: Recall that two sequences {p,} and {g,} are linearly dependent if two
numbers (A, p) exist (not both zero) such that, for all =,

rp, + ugq, = 0.

In the other case, the sequences are linearly independent. It is easy to prove
that {pn} and {q,}, when satisfying (3), are linearly dependent if and only if

(8) Pod; — P19 = O-

2. Proof of Theorem 1

Let us suppose that {p,} and {g,} are two independent integer solutions of
(3) and define the sequence A, by

(9) by, =P,_19, = P,9,-1> " = 1.
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It is easily proved that
(10) A, = =D, A1, n 2 2.
Hence,
(11) A, = (-1)""1by, ... byby, noz 2.
By the Remark above, Al =pod1 ~ P19 * 0, and by (5) we have
(12) lim|a,| = |8y |P;
n>ow

thus, the sequence of integers ’An] converges and we deduce from (12) that
(13) fAn| = IAIIP’ for all large n.
By (11) we have A, z 0 for all n (since b, # 0 and Aj; # 0). Hence, (13) shows
that P # 0. By (10) we have
Il
|An—11

This concludes the proof of Theorem 1.

= lbnl, for all large n.

3. Proof of Theorem 2

Suppose that {p,} and {q,} are two independent integer solutions of (3) and
define the sequence D, of integers by

Dn = Pn-29, = Ppy9n-2> 7 z 2.
It is obvious that

(14) D, = a,b,_1, n 2 2.

However, by (6) we have, for »n large, since ‘bnl =1,
|a,] = [21]P = 0.

Hence,

(15) IDHI = IanllAllp z 0, for all large =,

and by (7),

1im|D, | = a|sy]P.
n> o
Thus, for all large n,
(16) |Dn| = alaq|P.

Note that g # 0, since D, # 0, and that g is a rational number by (16). Com-
parison of (15) and (16) shows that

!anl = q, for all large n.
Let us now write aq = p/q, where p and ¢ are relatively prime integers. With-

out loss of generality, we can assume that

a7n o, = i%z¢n_1 * Up_p, for m > 2.

Consider the solution {v,} of (17) defined by the initial values (0, 1). Note
that Ayv, is an integer, namely,

Alvn = ~q4P, + Pod,-
The relation
_,P
vy = 2000, 1 * AUy

206 [Aug.



SEQUENCES OF INTEGERS SATISFYING RECURRENCE RELATIONS

shows that
qlAIUnhl, for n = 2.

By mathematical induction, it is easy to prove that for all integers m=1
and n =2 1, qm|Alun. Therefore, g = 1, and ¢ is an integer.

4. Application

Suppose that |b,| = C,_1/C,, with C,, # 0 for all n, C
lim C, = C.

n
1> oo

. % C,_1, and

We can then write

[ 15| = 2 hat P = UL
= —=—, SO0 that = —.
k=2 k Cy C

By Theorem 1, the sequence (3) cannot have two linearly independent solutiomns,
since |b,| # 1.
This result can be applied to (1) with C, = n3, and also to the recurrences

(18) nu, - (2m+ 1)(2n - Duy-; + (n - Duy_» = 0,
and
(19) n2u, - (11n? - 11n + 3)u,.; - (n - D2u,_, = 0,

with ¢, = #n in (18), C, = n% in (19). Note that (18) and (19) admit integer
solutions defined by the initial wvalues (1, 2m + 1) [resp. (1, 3)]. The inte-
ger solution of (18) is simply u, = B, (-m), where

I n)(n + k) Nk Lk
Bu@) = oy Zten( - @1 = 11 (5)(" % 7)ente
is the n'™h Legendre polynomial over [0, 1] (see [3] for another proof). Equa-

tions (1) and (19) appear in Apery's proof of the irrationality of z(3) and
z(2).

Now, let us consider recurrence (2), in which we have

_ E%—an
n Ln_an'
Then
ﬁbL”dplL”f
= — an = 1lim — = V5.
k=2 k Fn N> Fn

By Theorem 1, the sequence (2) cannot have two linearly independent integer
solutions. it will be shown below (and in [4]) that the solution {g,} defined
by the initial values (l, 0) is an integer sequence. On the other hand, the
solution {p,} defined by the initial wvalues (0, 1) cannot be an integer
sequence. Let us write the first few values of these two sequences in order to
see this. They are:

n 0 1 2 3 4 5

8225 999146
3 5 Tt

du 1 0 3 25 816 59475

p, O 1 10 84

It can also be shown that

= 1
lim 22 = > = = 3.35988566624...
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Notice how quickly p, /q, converges. We have

Eﬁ = 3.3598856... and Eé = 3.35988566624...
qy qs

One can deduce from this that 2::=1(1/Ek) is irrational (see [4]).

5. Generalization

Consider the recurring sequence defined by ujy, ..., u,_; and
= o1 2 r,
(20) Up = QpUy, | T auu, _, + oo+ ayu,_ 1>,

where r is a strictly positive integer, and where {all}, ..., {al} are sequences
of rational numbers. By analogy with Theorem 1, we have the following result.

Theorem 1': Suppose that

(a) For all m > r, a, # 0.

n
(b) There exists a number P such that lim rl‘aZI = P.
nrw k=p

Then (20) has r linearly independent integer solutions only if ]a;‘ =1 for all
large 7.
Proof: Suppose that {p%}, ..., {p;} are r linearly independent integer sequence
solutions of (20) and define the sequence A, of integers by r x »r determinant

bp = pn—f+j‘1sigr’ n=zr-1l.

l<sjsr

It is easily proved that A, = (—1)T—1anAn_1. Hence,
"
iAn| = |Ar—1] I] |a£|» n =z r.
k=r

We have A,_; # 0, since the {pi}'s are independent, and the end of the proof is
as in Theorem 1.

The reader can also find a theorem analogous to Theorem 2.
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