SETS OF TERMS THAT DETERMINE ALL THE TERMS OF A
LINEAR RECURRENCE SEQUENCE

Clark Kimberling
University of Evansville, Evansville, IN 47222
(Submitted August 1989)

A second-order linear homogeneous recurrence sequence uUg, Ujls Us «++ 1S
defined by a recurrence relation u, = au,-1 + bu,-,, where a and b are complex
numbers with b # 0, and two initial terms u( and u;. We raise the following

question: for given a and b, what sets of terms, other than ug and u, are
sufficient to determine the entire sequence? We shall see that any two terms
are often sufficient, but mnot always. A comparable result will then be
presented for recurrences of higher order.

Suppose a and b are given and vy, and vq, where p < g, are known terms of a
sequence satisfying v, = av,-1 + bvy-2. Then the terms wu, and u, of the
sequence defined by u, = Vy4+,, where n = g - p, are known. Accordingly, with-
out loss of generality, we recast the original question as follows: under what
conditions on a, b, and n do the values of u, and u, determine the values of uy
for all m 2 07

The answer depends on a sequence of bivariate polynomials defined recur-
sively by F,(x, y) = xF,-1(x, y) + yFn-o(x, y), beginning with F;(x, y) = 1 and
Fo(x, y) = x. These are often called Fibonacci polynomials; indeed, F,(1, 1)
is the mth Fibonacci number.

Theorem 1: Suppose a and b are complex numbers satisfying F, (a, b) # 0, where
b # 0 and F,(x, y) denotes the Fibonacci polynomial of degree n - 1 in x. Then
ug and u, determine u, for all m 2 O.

Proof: If n = 1, then the recurrence u,= au,-1+ bu,-, determines u, inductively
for all m =2 0.

If n = 2, then the equation up, = auj; + buy yields u; = (up, - bug)/a, so that
u; and hence all u, are determined. [Note that a # 0, since a = Fy(a, b).]

For n 2 3, we have a system u; = aug-] + bug_, of n - 1 equations, for s =
2, 3, ..., n. Write the first of these as au; - up, = -bug, the last as bu,_, +
auy-1 = Uy, and all the others as bug_, + aug-1 - us = 0. As an example, for
n = 5, we have
auy - up = -buyg
buy + aus - ug =0
buy, + aug - uy, =0

bu3 + auy = us.
The coefficient matrix of this system,

a -1 0 0
b a -1 0
0 b a -1
0O 0 b a

clearly has determinant Fg(a, b) given by Laplace expansion about the first
column: aFy(a, b) + bF3z(a, b).

For the general case, n 2 3, it easy to see, inductively, that the deter-
minant of the coefficient matrix is F,(a, b). Accordingly, if F,(a, b) = O,
then the system has a unique solution. In particular, u; is determined, so
that u, is determined for all m > 0.
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Theorem Z: Suppose u; and u, are known for some n 2= 1. Suppose, further, that
a?/b is a nomnzero integer and one of the following holds:

(1) a@2/b does not equal -1, -2, or -3;

(i1) if » = 0 mod 3, then a® + b = 0
P - _ . 2 01
(iii) 4if »n = 0 mod 4, then a¢ + 2b = (3

(iv) 41if n = O mod 6, then a* + 3b = Q.

Then u, is determined for all m = 0.

in

Preof: The polynomial F, {(x, y} is an even functier if » is odd, and odd in

1
x 1if wn d1is even. Accordingly, by the Fundamental Theorem of Algebra, this
polynomial factors in the form

Fnx?, yy = (2% - eyp(a? - ¢

5/> e (‘xz - Cl:m

,}y)

if n is odd, and xf,_ (2%, y) if n is even, where ¢; is a complex number for
7 =1, 2, .., n ~ 1.

1f a?/b is a nonzero integer k, then a? ~kb = 0, so that ¢; = a2/b for some
1. Thus, x® - (a?/b)y divides F,(x, y).

It dis known {[l], Theorem 6) that the only divisors of F,(x, y) over the
ring J[{x, y] that have degree 2 in x are the three second-degree Fibonacci-
cyclotomic polynomials: z? Ys x? + 2Y s x? + 3y, and that these are divisors
if and only if »n dis divisible by 3, 4, or 6, respectively. Therefore, except

=)

for the four recognized case we have F,(a, b} = 0, so that, by Theorem 1, u,
is determined for ail m =z 0.

Theorem 3: Suppose a? + b = 0 and uy is known. Then u, = (-a)"uy for every
m = 0 mod 3. Also, if u; is known for some k not congruent to 0 modulec 3, then
U, 1s determined for all m = 0. In fact,

€b) U = (@) ’u,

for m=3i + 4, § =0, 1, 2, where up = au; - a%ug.

Proof: First, we shall establish equation (1). The statements
us; = (=D%a%%ug, wuge = (-D%a%uy, and ugyeo = (-DPa%u,

are clearly true for 7 = 0. Assume them true for arbitrary © = 0. Then
Uzg+3 = Auzzen + bugie

a(-1)"a%u, - a?(-1)ta%y,

(»1)"‘@:3”1@12 - aul)

(_1)71a37f+l(_a2uo)

(_l)i+la3i+3uo’

i

If

and, similarly,
_qyi+l 3743 = (—1)tt1g31+3

Usiy {(-1) a wy and Uz, g (-1) a Uy
By induction, therefore,

Uy = (-a®)’u; for m =34 + j, j =0, 1, 2.
Now equation (1) shows that uy determines those u, for which m is a multiple of
3, and no others. However, if Uz g is also known for some 7, then

= (3T

Uz = (Fa?)tug,
so that u; is determined, and hence u, is determined for all m = 0. A similar
argument obviously applies if ug, ., is kmown for some 7.
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Theorem 4: Suppose a® + 2b = 0 and ug is known. Then
Uy = (—l/h)m/qamuo for every m = 0 mod 4.

If u; is also known for some k not congruent to 0 modulo 4, then u, is deter-
mined for all m = 0. Imn fact,

Uy = (—a“/4)iuj form=47 + 3, § =0, 1, 2, 3,
where u, = auy - (a?/2)uy and uz = (a2/2)uy - (a3/2)uq.
Proof: (The proof is similar to that of Theorem 3 and is omitted here.)
Theorem 5: Suppose a? + 3b = 0 and ug is known. Then

U, = (=1/27)"®a™u for every m = 0 mod 6.

If wu; is also known for some k not congruent to 0 modulo 6, then U, is deter-
mined for all m = 0. Explicitly,

U, = auy - (a2/3)u0,

7/[3 = (2@2/3)2/{1 - (a3/3)u0,
uy, = @3/3)u; - (2a%/9)uy,
Ug = (a”/Q)u1 - (a5/9)u0,

and Uy, (—a6/27)iuj,
form=671+4 =0, 1, 2, 3, 4, 5.
Proof: (The proof is similar to that of Theorem 3 and is omitted here.)

Second-order sequences for which u; # 0 and ug = u, = 0 for some 7n = 2 are
of special interest, since in this case F, (a, b) = 0, so that Theorem 1 does not
apply. Theorem 6 describes such sequences. [To see that F,(a, b) = 0, note
that the recurrence u, = au,_,; + bum_z gives

U, = auy, ug = au, + bu; = (a® + b)u; = u;Fy(a, b),
= u,F, (a, b).]

Theorem 6: Let F,(x, y) denote the nth Fibonacci polynomial, where n 2 2. If
uy = 0 and uy = u, = 0, then F, (a, b) = 0, and there exist nonzero real numbers
¢, r and positive integers p, g such that

and by induction, u,

U, = cr™ sin mpw/q,
where #n is an integer multiple of g, for m = 0, 1,

Proof: From the Binet representation for the general term of a second-order
homogeneous recurrence sequence,

Uy, = wo™ + zam,
It is easy to check that z must be a complex conjugate of w, so, after writing
w=a+ bi and o = r(cos 6 + < sin 6), we have

U, = (a + bi)r™(cos m6 + < sin mb) + (a - bit)r™(cos mb - 7 sin m0)

= 2r™(a cos m6 - b sin mb).

Now a must equal 0, since u, = 0, and sin n6 must equal 0, since u, = 0. It
follows that 6 must be of the form pm/q, where n is a multiple of ¢g. Thus, the
asserted form for u, has been demonstrated. Since u, is not uniquely deter-

mined, Theorem 1 shows that 7 (a, b) = 0 (as was already proved differently just
before the statement of Theorem 6).
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Sequences of Higher Order

The method of proof of Theorem 1 extends readily to recurrence sequences of
arbitrary order k > 2, as indicated by Theorem 7.

Theorem 7: Suppose k 2 2, and suppose Cys Cps «--5 Cp_; are complex numbers
satisfying ¢, ; # 0. A set of k terms,

uoy uml’ Mng ce s uml\'—l’

where 0 < my < my <«.. < m_1, uniquely determine all the terms of a recurrence
sequence given by
(2) Uy = Cp U,y F Cp oy o T e+ cou,

if and only if the matrix M defined below is nonsingular: let /N denote the
(mg-1 = kK + 1) x (my-1 + 1) matrix (aij) given by

ej'i+1 forj=i—1,i,...,i+k—2
ag; =4-1 for g =i+ k- 1
0 for all remaining j, 0 < J < mg-1»

for ¢ =1, 2, «ov, Mgy - kK + 1,

and define M to be the (my-7 — kK + 1) x (my-y - K + 1) matrix obtained by delet-
ing from N the columns numbered O, my, Mp, <.y Mr_1-

Proof: Equation (2) generates, for n = k, kK + 1, ..., myp-1, a system of my_; -
k + 1 equations of the form

(3) CpqUn 1 * Cpgy_ o T +or + o, 5 — u, = 0.

If all the terms ug, %], Ups ..., Up, , are regarded as unknowns, then the coef-
ficient matrix of the system is V. If ug, Uy 5 Up,s +--5 Uy, , 8T€ NOW regarded
as known, and accordingly transposed to the right-hand side of each of the
equations (3), then the coefficient matrix of the resulting system is M. By
Cramer's Rule, this system has a unique solution if and only if IMI z 0.

As an example, consider a third-order recurrence

U, = au,_; + bu, _, + cu, _3,

and suppose ug, 41, and u, are known. (In the notation of Theorem 6, k = 3,
my = 1, and my = m.) Define T} =1, T, = a, and find for m = 4 that

[V|+= »

which on deletion of columns 0, 1, and 4 leaves

[a -1
Mj+=

b a

with determinant a? + b. Define T3 = a® + b. For m = 5,

ec b a -1 0 O a -1 0
Ng=]0 ¢ b a -1 0] yieldsMs=|Db a -1|,
0 0 c b a -1 e b a

with determinant T, = aT3 + bT, + ¢l;. Continuing with m = 6, 7, 8, ..., we
obtain recursively a sequence of trivariate polynomials:
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Tm = aTm_1 + bTm-—Z + CTW—I‘

Since, for example, T,(1,~1,1) = 0, Theorem 6 tells us that ug, u;, and ug are
not sufficient to determine all the terms of a sequence obeying the recurrence
Uy = Uy-1 = Uy-o + U,-3. On the other hand, as Ts5(l,~-1,1) = 0, the terms wug,
1, and ug do determine the entire sequence.
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