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PROBLEMS PROPOSED IN THIS ISSUE 

H-459 Proposed by Stanley Rabinowitz, Westford, MA 

Prove that for all n > 3, 

13/5 - 19r ( n ? 2 10 L2n+l + 4.4(-l) 

is very close to the square of an integer. 

H-460 Proposed by H.-J. Seiffert, Berlin, Germany 

Define the Fibonacci polynomials by 

FQ(x) = 05 Fl(x) = 1, Fn + 2(x) = xFn+1(x) + Fn (x). 
Show that, for a l l positive reals xs 

V 1 // 2 - 2 &M - i2U " D ^ + l U * ) + (2tt + l)F2n.l(2x) 1 
( a ) ^ lfyx + s l n ^j = 4x(^ + DF2n(2x) 2x2? 

n~l ' fcir\ (b) 111 l / (^2 + sin2 — ) ~ n/(x/x2 + 1), as n ^ w , 
/ < = 1 

(c) ^ l / s i n 2 | ^ = 2(n2 - l ) / 3 . 

H-461 Proposed by Lawrence Somer, Washington, D. C. 

Let { n̂} = w(as Z?) denote the Lucas sequence of the f i rs t kind satisfying 
the recursion relation 

Un + 2 ~ ^ ^ n + 1 ~̂~ blin 9 

where a and b are nonzero integers and the initial terms are UQ = 0 and u\ = 1. 
The prime p is a primitive divisor of un if p|un but p\um for 1 < m < n - 1. 
It is known (see [1], p. 200) for the Fibonacci sequence {Fn} = w(l, 1) that, 
if p is an odd prime divisor of ̂ 2n+l» where n > 1, then p E 1 (mod 4). 
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(i) Find an infinite number of recurrences u(a, b) such that every odd 
primitive prime divisor p of any term of the form ^2n + l o r uhn satisfies p = 1 
(mod 4), where n > 1. 

(ii) Find an infinite number of recurrences u(as b) such that every odd 
primitive prime divisor p of any term of the form u^n or Ui+n + 2 satisfies p = 1 
(mod 4), where n > 1. 

Reference 

1. E. Lucas. "Theorie des Fonctions Numeriques Simplement Periodiques." Amer. 
J. Math. 1 (1878):184-240, 289-321. 

SOLUTION 

Either Way 

H-441 Proposed by Albert A. Mullin, Huntsville, AL 
(Vol. 28, no. 2, May 1990) 

By analogy with palindrome, a Validrome is a sentence, formula, relation, 
or verse that remains valid whether read forward or backward. For example, 
relative to prime factorization, 341 is a factorably validromic number since 
341 = 11 • 31, and when backward gives 13 • 11 = 143, which is also correct. (1) 
What is the largest factorably validromic square you can find? (2) What is the 
largest factorably validromic square, avoiding palindromic numbers, you can 
find? Here are three examples of factorably validromic squares: 

13 • 13, 101 •101, 311 • 311. 

Solution by Paul S. Bruckman, Edmonds, WA 

Suppose n = 0x02...Qr is in denary notation; we write 

n' = QrQr..i.. .©!. 

Given two natural numbers m and n, we say the product m x n is validromic if and 
only ±f mx n = mr x nr. A natural number n is said to be a validromic square 
root if and only if: 
(1) (n2) ' = in')2-. 
Let V denote the set of validromic square roots; we also write n € V if equation 
(1) holds. In this case, we also call n2- a validromic square. 

Some interesting properties of such numbers are derived by analyzing the 
familiar "long multiplication" process, somewhat modified. The multiplication 
for nz = n x n is indicated below: 

(2) 

u l u r u 2 u r 
h6r-l e 2 6 r - l 0 3 e r - l 

r- 1 r 
0 0 , v r - 1 

ao 

ef 
s i 
ai 

0 i e 2 ' 
e 2 0 l • 

s2 . 
a2 . 

. . er_2
02 

•• e r - l 6 l 

' • Sr-1 

•• ar-l 

6 r - l 0 2 

M l 
Sr 
ar 

e r 0 2 

Sr+l • 
ar + l ' 

* S 2 r - 2 

' a 2 r - 2 

S2r-1 
a2r-l 
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In th is product, the terms Q^dj are not reduced (mod 10) as they would nor-
mally be3 nor are the columnar sums sk. Therefore, 

Qv = Z* O^-,-) or more precisely, 

1 < i , j < r 

min(fes v ) 
(3) sk = £ e A + l - i > fe " 1. 2, . . . . 2r - 1. 

i =max(A: - r + 1, 1) 

Thus, the terms 0^6^ and the sums s^ are not necessari ly denary d i g i t s . How-
ever., the ak s (indicated below the sk

1 s) are denary d i g i t s , obtained by the 
process of "carrying forward and bringing down11 familiar to any schoolchild. 
We do not preclude the poss ib i l i ty aQ = 0. 

Next, we carry out the similar mult ipl icat ion for (n*)2- = n?xnft 

u r - l 
8 r - l 

(4) 

e , e 
r -1 r 

u r ° l ° r - l ° l 
8 r - l 6 2 e r - 2 6 2 

J 3 ° r - 1 ° 2 u r - l D l u r - 1 
e 2e r 6 l e r 

U2U1 
6162 

As in the first product, we allow b§ = 0. The observation that the columnar 
sums sk in (4) are identical to those in (2) (except in reverse order) is a 
consequence of their consisting of the same components 6^0j, albeit in permuted 
order. In fact, we see that if we reverse the order of the r "product-rows11 in 
(4) , then reverse the order of the digits in each such row, we obtain the 
corresponding product-rows of (2). 

Using the notation introduced, we call the product n x n proper if and only 
if, for all i, j'e{l, 2, . .., r}, ke{l, 2, . .., 2r - 1}, the products 6i Qj and 
the sfe?s are all denary digits. Otherwise, we say that the product n x n is 
improper* We now prove a useful characterization of validromic square roots. 

Theorem 1: n e V if and only if n x n is proper. 

Proof: First, suppose n x n is proper. Looking at (2) and (4), it is clear that 
aQ = bQ = 0, and moreover that ak = sk = b2r_k, /c = 1, 2, . .., 2r - 1. Equiva-
lently, (n2) f = (nf)2, or neV. 

Conversely, suppose that sk * ak for some k. Let sk = ak5 for all k > h9 
but s h = ah + 10(3^ for some J^ > 1. Inspection of (4) yields: 

b2r-h = ah* b u t blr-h-l = sh+l + ^h (mod 1 0 ) 5 

if 7z = 2r - 1, we define s 2 r
 = ^2P = 0- If dh ^ 0 (mod 10), then 

blr-h-1 E a/z + l + 7̂z (mod 1 0 ) * s o ^2r-7z-l * ah+l-
If dh = 0 (mod 10), then 

y2r-h -1 =
 ah+l> b u t h2. r-h-2 

3h+2 + ^fr + l *h + 2 + Jh+1 (mod 10), 

where dh+l = dh/10« We apply the same argument until we find a nonzero remain-
der that is not a multiple of 10; eventually, there exists a value of k such that 
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b^v-k * ak' Thus, if nxn is improper, then n£V. This completes the proof of 
Theorem 1. 

The theorem just proved greatly facilitates the search for validromic 
square roots (and validromic squares). A by-product of its proof is that if 
neV and n has v digits, then n2- has 2r - 1 digits; to avoid trivial variants, 
we adopt the convention that, if n = 6102.«.epeF, then 0} * 0, dr * 0. Thus, 
n2 < 102r~ , which implies the following 

Corollary: If n e V has v digits, then n < [I0r~^] = 3162,.. . 
O digits) 

Let nv denote the largest r-digit validromic square root. Then, by the 
Corollary, n\ < 3, n2 ^ 31, n$ < 316, etc. We readily find that n^ = 3 (trivi-
ally), and ri2 = 31. There are other useful observations that may be made to 
facilitate extension of these initial results. 

In what follows, we suppose that nr = 6162°••®v E V (with the conventions as 
described previously). First, we surmise that 0! = 3 for all r; this is easily 
proved. Clearly, this is true for r = 1 and r = 2. If r > 2, define 

then 
mT = 3 0 0 ... 0 1; 

m2 = 9 0 0 ... 0 6 0 0 ... 0 1, and (jn'r)2 = 1 0 0 . . . 0 6 0 0 . . . 0 9 , 

so mv E V. Since nv > mr, by definition of nr9 thus 0]_ > 3. But the Corollary 
implies Q\ < 3. Hence, 0]_ = 3. 

Clearly, if n > m and m x m is improper, so is nxn. This observation allows 
us to reject all candidates for nr which exceed a previously excluded candidate 
and differ from it in only one or more digits. However, a much more powerful 
result may be inferred, which greatly reduces our search for nr. Given that 
0 1 = 3 and 0P = 1, then the formula in (3) implies: 

sk - 20i0fe = 60^, for k = 2, 3, ..., r. 
However, sk must be a digit; this implies 0̂  = 0 or 1. Therefore, nv must be 
composed of "binary" digits, except for Its leading digit, which is 3, and its 
last digit must equal 1. 

Proceeding largely by trial and error, with the tools developed thus far, 
we find nr, at least for the initial values of r. We begin from the left with 
01 = 3, then affix as many consecutive l?s as possible to the right. When one 
or more 0's must be used, we try to minimize the number of such 0's, and to 
push them as far to the right as possible, subject only to the condition that 
0P = 1. As we proceed, we keep track of the rejected candidates, so as to 
reduce our search. Thus, if 0]_02.-.6r is such a rejected value for nr, then we 
know that nr+i < 0]_02-• • O^l. Proceeding in this fashion, we find the following 
values of nr, up to v = 15 (though we could have continued the table, by these 
same methods): 

(5) 

Inspection of the foregoing table leads to the conjecture that Qk is constant 
for all sufficiently large r; a rigorous proof of this premise seems possible 
but was not attempted. A related observation is that, for sufficiently large 
k, the values of Qk do not affect the leading digits of n£. 

1 
2 
3 
4 
5 

3 
31 
311 
3111 
31111 

6 
7 
8 
9 
10 

311101 
31111 01 
31111 001 
31111 0101 
31111 01001 

11 
12 
13 
14 
15 

31111 01000 1 
31111 01010 01 
31111 01010 001 
31111 01010 0011 
31111 01010 00001 
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To s t r e s s dependence of r (as we l l as k), we use the expanded n o t a t i o n -
0 ( r ) - 0 s ( P ) = q 

If 2^ represents the minimum value of r such that 6^} = 0fc5 a constant for all 
T > pfcJ we can tabulate our apparent results as follows: 

K. 

1 
2 
3 
4 
5 
6 

rk 

1 
2 
3 
4 
7 
7 

_Iii 
3 
1 
1 
1 
1 
0 

k 

1 
8 
9 

10 
11 
12 

vk 

9 
9 

12 
11 
12 
16 

h 
1 
0 
1 
0 
0 
1 

13 15 0 
14 21 1 

(6) 3 3 1 9 12 1 15 16 0 
16 17 0 
17 26 1 
18 19 0 etc. 

Of course, in order to form this table, we first need to compute nT for 
r » 18; even then? we cannot always be certain that the values in (6) are cor-
rect, at least for the higher values of k. However, if we can accept these 
values as gospels we may then extend the table of n P

f s . 
The number of terms 6^0^ in s^ is maximized when k = r, and such number is 

T. A necessary (but not sufficient) test, therefore, is that s^ be a digit. 
Other values of s ^ also need to be tested., of course; since the ones most 
likely to fail are the ones whose terms contain 0 ]_ = 3, we test those first. 

We illustrate by finding n^, assuming that (6) is correct. We note that 

(2 7) „ 1 ^ fl(27) fl(2 7) _ 9 V f l fl(27) 4- ft2 T H f h A ( 2 7 ) - 1 » 

£= 1 £= 1 

thus, 

42
7

7) - 2 ( e £ > 1 + e£7>e2+ e(|57)e3 + 6 ^ 6 , + e(
2

2>5 + e%h7 + e ( 2 7 ) e 9 ) + e f , 
- 2 ( 3 + e(

2
2
6
7) + e(

2
2
5
7) + e(

2\7) + e(
2
2
3
7) + e(

2
27) + e(2

9
7)) + 1. 

(2 7) (2 7) 

To maximize n 2 7 5 we may attempt 0ig - 1; however, since s 2 7 is to be a digit, 
this forces 0 ^ = Q(fP = 0(^7) = 0(225?) = © ^ = °. A t t h i s P o i n t * nothing can 

(9 7) (? 7) 
be inferred about 0 2 Q or 0 2 2 ; f o r tnis* w e need to consider the following: 

42o? ) = £ e ( r ) e 2 2 i 7 - i - 2(e(
2

2
0

7 )91 + e ( 2 7 ) e 2 + 6 1 7 e , + e 1 4 e 7 + e 1 2 e 9 ) 
i= 1 

= . 2(0(|o7) + 1 + 1 + 1 + 1 ) , 

(27) assuming 0,g = 1. In order for this last expression to be a digits we must 

have 0(22o7) = 0. Likewise, we find that 0(2g7) = 1 implies s(2227) = 2(0(2227) + 1 + 1 + 
(2 7) 

1 + 1 ) , which can only be a digit if 0 2 2 = 0. Therefore, we surmise that n27 
is given by using the values of Qk shown by (6) for its first 18 digits, then, 

with 0(i297)022O7)* • • 92277) = 100000001. Testing this as a candidate for n £ 7 , we find 

that it works; hence, we conclude that n 2 7 is as just described. 

Continuing in this fashion, we may extend (5) and (6) by alternating back 
and forth between tables. With considerable effort, the following additional 
values of nr were derived (manually) by these methods: 
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r nr 
16 31111 01010 01000 1 
17 31111 01010 01010 01 
18 31111 01010 01000 001 
19 31111 01010 01010 0101 
20 31111 01010 01000 00001 
21 31111 01010 01010 01000 1 
22 31111 01010 01010 01000 01 
23 31111 01010 01010 01000 001 
24 31111 01010 01010 01010 0001 
25 31111 01010 01010 00000 00001 
26 31111 01010 01010 01010 00010 1 
27 31111 01010 01010 01010 00000 01 
28 31111 01010 01010 01010 00000 001 
29 31111 01010 01010 01010 00010 0001 
30 31111 01010 01010 01000 10000 00001 

In theory, one could extend these results indefinitely, however, without the 
aid of a computer, human endurance wanes. It seems quite plausible that a 
program might be devised, enabling extension of the foregoing tables to an 
arbitrary degree. The aim of such extension would be to discover any lurking 
pattern in the sequence of "binary" digits among the 6^fs, as k increases. It 
may be surmised that, having discovered such a pattern, one might be able to 
prove its validity rigorously. This exercise is left for the interested 
reader. 

As for this particular solver, he gave up the effort at p = 30. Therefore, 
to "answer" both parts of the problem simultaneously (since neither nr nor n^9 
clearly, are palindromes), the largest validromic square found was ^3Q, where 

3̂0 31111 01010 01010 01000 10000 00001. 

Note: The proposer noted that 441 
to squares is unnecessary. 

21*21, so that the restriction of factors 
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