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1. Introduction 

In this paper, we shall extend some previous results ([2], [3], [4]) con-
cerning divisibility of terms of certain recurring sequences based on their 
subscripts. We shall use the generalized Fibonacci and Lucas numbers, defined 
for n > 0 by 

Un = a _ g and Vn = a- + 3", 

where a and 3 are two complex numbers such that P = a + 3 and Q = a3 are rela-
tively prime nonzero integers. We shall exclude from consideration the case in 
which and are roots of unity. Then Un and Vn are always different from 
zero [1]. We shall also give some applications to the equation 

an ± bn = 0 (mod n), 

where a > b > 1 are relatively prime integers. 
In what follows 5 a) (q) [resp. TA (q) ] denotes the rank of apparition of the 

positive integer q in the sequence {Um} (resp. {Vm}) > i.e., the least positive 
index OJ (resp. oo) for which q\U^ (resp. ^ I ^ ) . Recall that the integer b is an 
odd multiple of the integer a if a\b and 2J(£/a). The main result, which 
generalizes the one of Jarden [3], can be stated as follows. 

Theorem 1: Let n = p^p^2 ••• P^k - 2 be a natural integer. 

(i) If n > 2 divides some member of the sequence {Um}9 then Un = 0 (mod 
ri) if and only if the rank of apparition of any prime divisor of n also divides 
n. 

(ii) If n > 3 divides some member of the sequence {Vm}, then Vn = 0 (mod 
ft) if and only if n is an odd multiple of lcm(oo(p-,), ..., oo(p, )). 

2. Preliminary Results 

The following well-known properties will be necessary for our future 
proofs. Proofs of these results can be found in the papers of Lucas [5] or 
Carmichael [1] . 

(i) For each integer ft > 1, gcd(tf„, Q) = gcd(7n, Q) = 1. 
(ii) If p is a prime number such that p|§, then 0)(p) = p if and only if 

p\(a - 3 ) 2
5 and gcd(o)(p), p) = 1 otherwise. 

(iii) If q is a prime divisor of o)(p), with p * 2 and p|(a - 3 ) 2
5 then 

q < p. Moreover, we have 

(a) oo(pA) = o)(p)p^, 0 < y < A, 

(b) a)(PlAl ... p ^ ) = lcm(a)(pj1), ..., a)(p^)), and 

(c) n\Um if and only if u)(ft) |T7Z. 

(iv) If the prime number p divides some member of the sequence {Vm}, then 
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(a) u(p) < p, 
(b) gcd(aj(p), p) = 1, 
(c) o)(pA) = Ui(p)pv3 0 < u < X, p odd, 
(d) If 2x\Vm, then u>(2) = w(2A), and 

(e) If n = p̂ i ... p̂fc divides some member of the sequence {Vm}, 
then aj(n) = lcm(aKp^i) , • ••> w(p*k)), and, for n > 3, n | Vm if and only if 7̂ is 
an odd multiple of w(n). 

3. Proof of Theorem 1 

(i) Let n = pAi . . . p}^ > 2 be an integer which divides some member of the 
sequence {Um}. First, assume that n\Un. Then, for each 1 < i < k5 p-\Un, and 
a)(p̂ )|n. Second, assume that, for each i, u>(p.)\n. 

If p |(a - 3)2, then 

a)(pA0 = wCp^p^ = p^+1|n, 

since u^ < X^\ otherwise, 

a)(p£*) = w(pi)p_.yi |w, 

since gcd(a)(p̂  ) , p^ ) = 1, and \ii < X^. Thus, 

o)(n) = lcm((jo(pAi), . .., co(pAk))jn, and n\Un. 

(ii) Now, let n = p^1 . . . p^k > 3 be an integer which divides some member 
of the sequence {Vm}. First, assume that n is an odd multiple of lcm (aKp^, 
. .., o)(p, )). If p = 2, then 0)(p|O = aj(p̂ )|?z, whereas if p^ * 2, then o)(pxt) 
= oo(p.)p.yi |̂ s since gcd(aj(p^), p^) = 1, and u^ < A^. Therefore, n is an odd 
multiple of oo(n) = lcm(oo(pAi), . .., a)(pM), since n is an odd multiple of 
lcm (GO (p^, . .., Hd(p )) . Second, assume that n \ Vn, with ?2 > 3. We know that n 
is an odd multiple of lcm (oKp^1)? . .., ~b)(p}k)) = a)(n) . Therefore, n is an odd 
multiple of lcmCoKp^, ..., o)(pfe)), since aj(p^) = aj(pi)p^, p^ odd, or w(p^O 
= oJCpOs if p^ = 2. This concludes the proof of Theorem 1. 

Theorem 1 immediately yields the following Corollary, due to Jarden [3]. 

Corollary 1: (i) If Un E 0 (mod n) , and //? is composed of only prime factors of 
n, then also £/mn E 0 (mod 777ft) . 

(ii) If 7n E 0 (mod ft), and m is composed of only odd prime fac-
tors of ft, then also Vmn = 0 (mod mri) . 
Remark 1: By application of Theorem 1 and Corollary 1, numerical examples can 
be obtained. For instance, let ft = pX l ... pA k be an odd number, such that 
3 < p l < • • • < p., and n\Un. We have a K p ^ * 1, since [/-L = 1, and by §2(iii), 
w(pi) = Pis and pi | (a - 3)2? since a K p ^ is a factor of ft. This case can occur 
only if (a - 3 ) 2 admits an odd prime divisor. Moreover, we have 

w(pi) = Pi5 
or 

w(Pi) = PT1 .-• Pi'-V > £ = 2, ..., fc; uj < Xj, j = 1, ..., i - 1. 
Theorem 1 also yields the following Corollary. 

Corollary 2: If n\Un, then Un\Uv . 
Proof: If n\Un, and if p is a prime number such that p\Un, then w(p)|n|j/„, and 
the result follows by Theorem 1. 
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4. The Congruence an ± bn - 0 (mod n) 

In what follows, we assume that a > b ̂  1 are relatively prime integers and 
that e{n) denotes the rank of apparition of n in the sequence {am - bm]. The 
next result generalizes the main theorem of [4]. 

Theorem 2: Let n and ab be relatively prime. Then the following statements 
are equivalent: 

(i) Un E 0 (mod n). 
(ii) an - bn = 0 (mod ri) . 
(iii) n = 0 [mod e(n)]. 
(iv) n = 0 [mod e(p)], for each prime factor p of n. 

Proof: It is clear that (i) =*• (ii) => (iii) =* (iv) . Now, assume that n E 0 [mod 
e(p)] for each prime factor of n. If p|a -2?, then [§2(ii)] oa(p) = p\n. On 
the other hand, if p\a - Z?, then p\Un if and only if p\an - bn. Thus, a)(p) = 
e(p)\n. The conclusion follows by Theorem 1. 

Corollary 3: The equation an - bn E 0 (mod n) has 

(i) no solution if a = b + 1 and n > 2, 
(ii) infinitely many solutions otherwise. 

Proof: If a - b admits at least one prime divisor p, then px\UpX > for each pos-
itive integer A, by Corollary 1. On the other hand, if a - b = 1 , then Q = ab 
is even and n must be odd. But this case cannot occur since, if p was the 
least prime factor of n, we would have, by Remark 1 above, 

o)(p) | (a - b)1. Q.E.D. 

Corollary 4: The equation an + bn = 0 (mod n) admits infinitely many solutions. 

Proof: If 7j_ = a + 2? admits an odd prime divisor p, then px\Vp\, for each A > 1, 
by Theorem 1 and Corollary 1. On the other hand, suppose that 

Vi = a + b = 2m, m > 2. 

Thus a and 2? are odd and 

V2 = (a + b)1 - lab = 2(22m"1 - Q), 

where 22"7"1 - Q > 1 is odd, since Q is also odd. Thus, 72 admits an odd prime 
divisor p, and 2p is an odd multiple of lcm(u)(2), w(p)) = 2 . By Theorem 1 and 
Corollary 1, we have 

2pa|^2pa5 a > 1. Q.E.D. 
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