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BASIC FORMULAS

The Fibonacci numbers #, and the Lucas numbers L,, satisfy
Fopo = Bopr + By Fo =0, Fp = 15
Lnvo = buyr + Ly Lg = 2, Ly = 1.
Also, o = (1 + /5)/2, 8 = (1 J/5Y/2, F, = (o - g™ /Y5, and L, = a" + g".

PROBLEMS PROPOSED IN THIS ISSUE
B-700 Proposed by Herta T. Freitag, Roanoke, VA

Prove that for positive integers m and #,

a”(al, + Ly_1) = o (al, + Lp_1).
B-701 Proposed by Herta T. Freitag, Roanoke, VA

In triangles ABC and DEF, AC = DF = 5F,,, BC = L,yyL,_1, EF = L, 1L, 5, and
AB = DE = 5Fy,.1 = Lpn41 + (-1)771. Prove that LACB = LDFE.

B-702 Proposed by L. Kuipers, Sierre, Switzerland

For n a positive integer, let

x, = F, + and y, = F, +

(a) PFind closed form expressions for x, and y,.
(b) Prove that x, < y, when n > 1.
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B-703 Proposed by H.-J. Seiffert, Berlin, Germany

Prove that for all positive integers n,
2 AL
i 472—7\’F‘+T _ F2n+1 4
K=1 z 5
B-704 Proposed by Paul S. Bruckman, Edmonds, WA

Let a and b be fixed integers. Show that if three integers are of the form
ax? + byz for some integers x and y, then their product is also of this form.

B-705 Proposed by H.-J. Seiffert, Berlin, Germany

> LZVZ 712
(a) Prove that ..
Eog
: % F2n
(b) Find the value of E: —
=)
SOLUTIONS

edited by A. P. Hillman

Triangular Divisibility

B-676 Proposed by Herta T. Freitag, Roanoke, VA

Let T, be the nth triangular number #n(n + 1)/2. Characterize the positive
integers »n such that

n
Tl 20T

=1

Solution by Hans Kappus, Rodersdorf, Switzerland

It is immediate that

14

20 = (n+ 2)T,/3.

=1

Therefore, 7, divides 2:7_ T. if and only if n = 1 (mod 3).
7 =117 Y

Also solved by R. André-Jeannin, Charles Ashbacher, Wray Brady, Paul S.
Bruckman, Russell Euler, Guo-Gang Gao, Russell Jay Hendel, Joseph J.
Kostal, L. Kuipers, Carl Libis, Graham Lord, Bob Prielipp, Don Redmond, H.-
J. Seiffert, Sahib Singh, Paul Smith, Lawrence Somer, W. R. Utz, and the
proposer.

More Triangular Divisibility

B-677 Proposed by Herta T. Freitag, Roanoke, VA

Let T, = n(n + 1)/2. Characterize the positive integers » with

n n
Z Ti Z Tiz'

i=1 i=1
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Solution by Hans Kappus, Rodersdorf, Switzerland

A straightforward calculation shows that

n 2 . 2 n
2 _3mftt+ton+1 n+2 _3nc+ 6nm+1
PR 10 3 In = 10 2T
by the result of B-676. Working mod 10, we see that 3n2 + 6n + 1 is a multiple
of 10 if and only if
n =1 (mod 10) or #n = 7 (mod 10).

Also solved by R. André-Jeannin, Charles Ashbacher, Paul S. Bruckman,
Russell Euler, Joseph J. Kostal, L. Kuipers, Carl Libis, Graham Lord, Bob
Prielipp, H.-J. Seiffert, Sahib Singh, Paul Smith, and the proposer.

Nontriangular Numbers

B-678 Proposed by R. André-Jeannin, Sfax, Tunisia
Show that Ly, and Ly,,3 are never triangular numbers.
Solution by Bob Prielipp, University of Wisconsin-Oshkosh‘, wI

We shall use the following known results in our solution:
(1) Ly, -2-= 5F§n for each positive integer #;

(2) Lo t 2= 5F§h+l for each nonnegative integer n.

Note: (1) is (I;g) and (2) is (Iy7) on p. 59 of Fibonacci and Lucas Numbers by
Verner E. Hoggatt, Jr. (Boston: Houghton Mifflin, 1969).

As immediate corollaries, we have:

(1") Ly, = 2 (mod 5);

(2") Ly,+2 = 3 (mod 5).

Next, we establish the following results.

Lemma 1: The sequence of triangular numbers T, is periodic modulo 5 with a
period of 5.

Proof: It suffices to show that T,,5 = T, (mod 5) where % is an arbitrary posi-
tive integer.

(n+5)(n+6) nrn+1) _ n2 + 1ln + 30) - (2 + n)
2

Tpys - T = 2 2

52 + 15 = 0 (mod 5).

Lemma 2: Let n be a positive integer. Then T, is congruent to 0, 1, or 3 mod-
ulo 5.

Proof: The claimed result follows from Lemma 1 and the table given below.
n 1 2 3 4 5
T, 1 3 6 10 15
T, (mod 5) 1 3 1 0 0

The fact that L,, is never a triangular number follows from (1') and Lemma 2.
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Since, from (1') and (27),
Lup+3 = 2Lups2 = Luys Dunss = 2(3) = 2 (mod 5),

we have
Ly,+3 = 4 (mod 5).

Thus, Ly,+3 is never a triangular number by Lemma 2.

Also solved by Paul S. Bruckman, H.-J. Seiffert, Sahib Singh, and the
proposers.

Product of 4 Lucas Numbers

B-679 Proposed by R. André-Jeannin, Sfax, Tunisia
Express L, -9L,-1L,,1L,+» as a polynomial in L,.

Solution by Guo-Gang Gao, Université de Montréal, Montréal, Canada
It is easy to prove that L,, = L% - (-1)"2. Then

Ln-ZLn+2 = (an-z + Bn—Z) (0L”+2 + Bn+2)
Lo, + (=1)"72L,

2
Ly + (-1)7"s5.

Similarly,
Lp-1lne1 = Ly = (-1)"S.
Therefore,
Dy-gly-1Lps1lnsn = Ly - 25.
.Also solved by Paul S. Bruckman, Russell Euler, Herta T. Freitag, Russell Jay

Hendel, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Paul Smith, Lawrence
Somer, and the proposer.

Congruence
B-681 Proposed by H.-J. Seiffert, Berlin, Germany
Let n be a nonnegative integer, kK > 2 an even integer, and » € {0, 1, ...,

k - 1}. Show that
Foper = (Fyp = Fpdn + F, (mod Ly - 2).

Solution by Guo-Gang Gao, Université de Montréal, Montréal, Canada

Let us first prove that

F = F L, -F

(n+l)+r kn+r~k k(n-1)+r?

where k 2 2 is an even integer and r > 0. Notice that

(a x Bk = (-1)k = 1.

Lk = _l_(akn‘I-I‘ _ 6kn+r) (Otk + Bk)

/5

Fkn+r’
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L(artrDer  greeDeny 4 L kmDer _ greimDeny
/5
= Besrr T P

Use mathematical induction for the proof:

(1) It is trivially true when n = 0, 1.

(2) Assume that the claim holds for up to x.
Then, by the inductive hypothesis, we have the following:

Fk(n+1)+r = Fyanly Fk(n—1)+r
= (B, - Fpdn+ Fu)ly
- ((Fypy — Fad(n = 1) + F.) (mod Ly - 2)

2((F = Fdn + 1)

Ht

- ((Fyp ~F)(n - 1) + Fn) (mod Ly ~ 2)
S (F - F)n+ 1) +F (mod L, - 2).
This completes the proof.

Also solved by Paul S. Bruckman, Bob Prielipp, and the proposer.

Lucas Triangular Numbers

B-682 Proposed by Joseph J. Kostal, University of Illinois, Chicago, IL
Let T(n) be the triangular number #n(m + 1)/2. Show that
1
T(LG) -1 = E([/LH7 + LZH).
Solution by C. Georghiou, University of Patras, Patras, Greece

We have

T(Ly ) = 1= (L5, + L, = 2)/2= (I, +1,)/2,
since it is well known that L%n -2=1L,.
Also solved by Charles Ashbacher, Scott H. Brown, Paul S. Bruckman, David
M. Burton, Russell Euler, Piero Filipponi, Herta T. Freitag, Guo-Gang Gao,
Russell Jay Hendel, L. Kuipers, Y. H. Harris Kwong, Carl Libis, Bob
Prielipp, Don Redmond, H.-J. Seiffert, Mohammad Parvez Shaikh, Sahib Singh,
Lawrence Somer, and the proposer.

LT-Composite

B-683 Proposed by Joseph J. Kostal, University of Illinois, Chicago, IL

Let L(n) = L, and T,, = n(n + 1)/2. Show that
L(Ty,) = L{2n2)L(n) + (-1)"*1L(2n? - n).

Solution by C. Georghiou, University of Patras, Patras, Greece

We have L(T,,) = L(2n%2 + n). But
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L(2n2 + n) - L(an)L(n) u2n2+n + 62n2+n - g2n%+n _ 62n2+n

- aZ"ZB” _ unBan
~(aB)" [a2"" 77 4 g2n* 7]
(-1 (2n? - ),

]

which proves the assertion.

Also solved by Charles Ashbacher, Paul S. Bruckman, David M. Burton,
Russell Euler, Piero Filipponi, Herta T. Freitag, Guo-Gang Gao, Russell Jay
Hendel, L. Kuipers, Y. H. Harris Kwong, Bob Prielipp, Don Redmond, H.-J.
Seiffert, Sahib Singh, Lawrence Somer, and the proposer.

B-680 Will be published in the next issue as an error was detected just before publication.

Hkokkk
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