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1. If D > 1 is a rational number, not a square, then /D has a (simple) con-
tinued fraction expansion of the form

/D = [bys bys --s by_y» 2by]

with k > 1 and positive integers b; such that the sequence (b1, ..., by-7) is
symmetric, i.e., b; = by-,; for all 2 € {1, ..., k - 1}. Necessary and suffi-
cient conditions on bg, ..., bg-1 which guarantee that D is an integer are
stated in [3; §26]. Recently, C. Friesen [1] gave a fresh proof of these
conditions. He deduced, moreover, that for a given symmetric sequence (by,
«v.s by-1) there is either no integral D such that the continued fraction expan-
sion of VD has the given sequence as its symmetric part or there are infinitely
many squarefree such D.

In this paper, I shall prove a more precise statement. Starting with the
conditions as in [3; §26] I will show that, given a symmetric sequence which
meets these conditions, there are infinitely many 0 with prescribed p-adic
exponent vp (D) for finitely many p and szD for all other p, such that VD has
the given sequence as the symmetric part of its continued fraction expansion.
Moreover, I will show that about 2/3 (resp. 5/6) of all symmetric sequences of
the given even (resp. odd) length are symmetric parts of the continued fraction
expansion of VD for some integral D. Finally, I consider the corresponding
questions for the continued fraction expansion of (1 + YD)/2 for an integral
D =1 (mod 4).

2. I begin by citing Satz [3; 3.17] in an appropriate form.

Theorem 1: Let (b1, ..., bg-1) (kK 2 1) be a symmetric sequence in N, and let
bg € N,. Then the following assertions are equivalent:

@) [bys bys -ves by_y» 2by] = YD with D € Ny;

b) bO = %' [me - (—l)kfg] for some m € Z, where e, f, and g are defined by the
matrix equation
k-1

e f b; 1
w (& D=1 b)

f g 7,'[[11 0
If this condition is fulfilled, then
(2) D = b3 + mf - (-1)kg2.

In order to state more precise results, I introduce the following notation.

Definition: For a symmetric sequence of positive integers (by, ..., by-1) (k =2 1)
let
Dby, wes byy)

be the set of all D € N, with VD = [bo, bys -5 by_1s 2by] for some by € N,.
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Corollary 1: Let (by, ..., bg-1) be a symmetric sequence in N, and define e, f,
g by (1). Then the following assertions are equivalent:

a) Dby, ..., b_y) = 0.
b) Either ¢ = 1 (mod 2) or e = fg =0 (mod 2).

If b) is fulfilled, then by, ..., by-;) consists of all D € N, which are of
the form s

2 42
(3) D=7 +{f— (-1)kfj—;5’}-m+[ng— (-1)k92]

with m € Z satisfying me - (-1)kfg > 0.

Proof: The conditions stated in b) are necessary and sufficient for the exist-—
ence of m € Z such that

by = 51 - [me - (-1)*fg]

is a positive integer. Inserting this expression for by in (2) yields (3). O

Applying Corollary 1 to the special sequence (b1, ..., br-1) = (1, ..., 1)

gives

(2 f)=<Fk' Fk—l>,

g Frop o Fr-2
where (F,),,_; is the ordinary Fibonacci sequence defined by

F—l =1, FO = 0, E%+1 = E% + Fn—l'
Taking into account that F; = 0 (mod 2) if and only if k = 0 (mod 3), I obtain
Corollary 2: 9(1, ..., 1) # ¢ if and only if kK Z 0 (mod 3).

[ —)
(k-1)

3. Now I investigate the possible prime powers dividing D € Z(by, ..., bx_1)
for a given symmetric sequence (by, ..., bx-1)-
For n € Z, n # 0, and a prime p, set

vp(n) = w if p?|n, p"lfn (w > 0).

The following result is an immediate consequence of the arguments given in [2;

§21.

Lemma: Let F(X) = AX?2 + BX + C € Z[X] be a quadratic polynomial. For a prime
p, set
Ep(F) = {w € N|v, (F(x)) = w for some x € Z}.

Let P be a finite set of primes, wp € E,(F) for p € P, and suppose that, for

. = 2 .
every prime p ¢ P, the congruence F(x) = 0 (mod p“) has at most two solutions x
(mod pz). Then there exist infinitely many x € N, such that

vp(F(x)) = wp for all p € P
and
vp(F(x)) < 1 for all primes p ¢ P.

Now let (b1, ««.5 byr-1) (k 2 1) be a symmetric sequence of positive inte-
gers. Define e, f, and g by (1) and, depending on these numbers, for every
prime p, a set E, = E,(e, f, g, k) C N of possible exponents as follows:

a) p = 2. (-1)*
{0}, if e = 1 (mod 2), pfe, and (——) = -1;
B, ={ P

N, otherwise.
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b) p=2,e =1 (mod 2):

E ={{0, 1}, if k =1 (mod 2);
2 N\{1, 2}, if kX = 0 (mod 2).

2, e = fg 0 (mod 2):

B = N,, if e =2, g = 0 (mod 4);
2 N, otherwise.

c) p

With these definitions, it is possible to state Theorem 2, which general-
izes the results of [1]:

Theorem 2: Let (bi, ..., bx-1) (k 2 1) be a symmetric sequence of positive in-
tegers, define ¢, f, and g by (1), and suppose that either ¢ = 1 (mod 2) or
e = fg =0 (mod 2). For a prime p, let E, = E (e, f, g, k) be defined as above.

i) 1If DeDbys --.» bp_l), then v, (D) € Ep for all primes p.

it) Let P be a finite set of primes and wp € E, for p € P. Then there are in-
finitely many D € Y(by, ..., by-1) such that v, (D) = wp for all p € P and
vp(D) <1 for all primes p ¢ P.

Proof:

Case 1. e =1 (mod 2). By (1), eg - f2 = (-1)¥*! and thus f + g
2). It follows from (3) that D € N if and only if m is even. Set
then, by (3),
f?g®

(4) D =D(n) = e?n? + [2f - (-1)kefgl * n + [T - (-l)kgz]-

1 (mod
= 2n;

3
[

By the above Lemma, it is enough to show that for every prime p the following
two assertions are true:

1. E, = {v,(D(x)) | € Z}.
2. The congruence D(x) = 0 (mod pz) has at most two solutions x (mod p2).

From (4) I obtain, by an easy calculation,

e 2
e2+D(n) = [ezn + f - (-l)k—gg} - (-D)*,
D'(n) = 2e%n + 2f - (-1)kefy.
If ple, p # 2, the congruence D(x) = 0 (mod p¥) has exactly one solution X
(mod pv) for every w 21 and thus there are x € Z with vp(D(x)) = w for every
w=0. If ple, p # 2, and [(—l)k/p] = -1, the congruence D(x) = 0 (mod p) has

no solution. If ple, p # 2, and [(-1)%/p] = 1, the congruence D(x) = 0 (mod p)
has two different solutions; these satisfy D'(x) Z0 (mod p) and, therefore, for
every w 2 0, there are x € Z with vp(D (x)) = w, and the congruence D(x) = 0
(mod pz) also has exactly two solutions modulo p2.

If Kk =1 (mod 2), the congruence D(x) = 0 (mod 4) is unsolvable, but since
D(0) # D(1) (mod 2), there are x € Z with v,(D(x)) = w for w = 0 and w = 1.

If Kk = 0 (mod 2), then

2
D(n) = (n+f+32-9-) -1 (mod 8);

thus D(x) = 0 (mod 2) already implies D(x) = O (mod 8), the congruence D(x) =
(mod 4) has exactly two solutions & (mod 4), and for every w 2 3 there are x €
Z with v, (D(x)) = w.

Case 2: e = fg = 0 (mod 2). By (1), eg - f2 = (-1)**1; thus, k¥ = 0 (mod
2), £ =1 (mod 2), and eg = 0 (mod 8). It follows from (3) that D € Z for all
m € Z; therefore, I have to consider the polynomial
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D = D(m) = if- m2 + <f - §§g>- m + (fé?i - gz>.

Again it is enough to show that for every prime p the following two assertions
are true:

1. Ep = {UP(D(x))lx € 7Z}.
2. The congruence D(x) = 0 (mod pz) has at most two solutions & (mod pz).

First, observe that

e?D(m) = (ez- m+ f - Ef€>2 - 1.
2 2

If p # 2, the congruence D(x) = 0 (mod p) has at least one and at most two
solutions 2 (mod p), and these satisfy D'(x) Z 0 (mod p). Therefore, for every
w € N, there are x € Z with vp(D(x)) = w, and the congruence D(x) = 0 (mod pz)
has at most two solutions x (mod pz).

Suppose now that e = 2 (mod 4) and g = 0 (mod 4). Then D(m) = m? + fm (mod
4), and it follows that D(m) = 0 (mod 2) for all m, D'(m) =1 (mod 2) for all
m, the congruence D(x) = 0 (mod 4) has exactly two solutions x (mod 4), and for
every w € N there are x € Z with vp (D(x)) = w.

If ¢ = 0 (mod 4) or g = 2 (mod 4), then the congruence D(x) = 0 (mod 2) is
soluble, and from D'(x) = 1 (mod 2) for all x, it follows that the congruence
D(x) = 0 (mod 4) has at most two solutions « (mod 4) and that, for every w € N,
there are x € Z with v, (D(x)) = w. [

4. In this section it will be shown that about 2/3 (resp. 5/6) of all symmet-
ric integer sequences (b1, ..., by-1) satisfy X(by, ..., by-1) #= . To do this,
define 0:7Z » GL,(F,) by

a 1

6(a) = (l 0) (mod 2);

for a finite sequence (b}, ..., b,) define
m
0(b1s «-v» bp) = .r[e(bj) € GLy(Fy).
Jg=1
Obviously, 6(by, ..., b,) depends only on by, ..., by (mod 2). Put

1 1 0 1
= = E
N (1 0)’ t (1 0> Lo (F2)
and find 03 = t2 = 1, ot = 102 [as GLy(Fy) = %3]1. With these definitions, the
following holds.

Theorem 3: Let (b1, +.., bx-1) (kK 2 1) be a symmetric sequence of positive
integers.

i) (b1s +--s br_1) # 0 if and only if 6(by, ..., bx-1) # o2.
ii) If k is even, k = 2%, then 6(by, ..., bx-1) = 02 if and only if
8(bys --v» by_1) € {1, 02} and b, = 1 (mod 2).
Furthermore, if IV, denotes the number of all
(bys -vvs byo1) € {0, 13471 with 6(by, ..., by-1) € {1, 02},
then

-1 ~1)%
N = 2____;t_£_ll_'

2 3
iii) If k is odd, k = 22 + 1, then 6(by, ..., bg-1) = 02 if and only if
0(b1s +..> by) € {o, ot}.
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Furthermore, if Ng denotes the number of all

6(bys ...> by) € {0, 1}* with 6(by, ..., by) € {0, o1},
then

g = Ng,1.

Proof: i) is an immediate consequence of Corollary 1. If k = 2% and

b
0(bys «ovs byo1) = (Z d) € GLy (Fy),
then
_(a Dby\(by l\(fa ¢ aby abye + 1
8(brs «evs br-1) = (c d><l 0)(b d)(abgc +1 cb, >
and thus
_ o _ (0 1
e(bl, e ooy bk—l) g (1 1)
if and only if a = 0, ¢ = b, = 1. Since
a b
@ By canay,
this implies also b = 1. Therefore, 6(by, ..., bx-1) = 02 if and only if

e(bl, c e ey bl—l) = <? ;) € {T, 02}.
If Kk = 28 + 1 and
8(b1s -ees by) = (& Z>€(Ezwz%

o, e e = (20 9 (210 Y-

if and only if a=b =1and d =c + 1, i.e.,

then

(g 2) € {0, ot}.
To obtain the formulas for N, and N{, consider the number
A,(8) = # (b1, ..., by) € {0, 1}']6(D;, ..., b,) = &}
for any nw € N, and & € GL,(F,). These quantities satisfy the recursion formulas

A1(0) = 41(1) =1,
A1(8) = 0 for all & € GL,(Fy)\{o, 1},
An1(E) = 4,(E0?) + A,(g1) for all £ € GL,(Fy),

which have the solution

[]

2771 + 2¢-1"-!

A,(0) = A, (1) = 3 >

277l 4+ ()"
3

4, (8) for ¢ € GLz(Fz)\{O, t}.

Therefore, for £ = 2,

2471+ (-t
3 >

2% 4 (_1)1+1

Ay (0) + Ay(o1) = T = Wy,

Ny = Ay 1(1) + 4,_1(02) =

Ny

]

and these formulas remain true for £ = 1. []
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5. In this final section I formulate the corresponding results for the con-
tinued fraction expansion of (1 + vD)/2 for D = 1 (mod 4); as the proofs are
very similar to those for /5, I leave them to the reader. (For Theorem IA, see
Satz [3; 3.34].)

Theorem 1A: Let (by, ..., by-1) (k 2 1) be a symmetric sequence in N, and let
by € N,. Then the following assertions are equivalent:

a) [bo, b19 ceey bk-l’ 2b0 - 1] = l_-g‘—/l_) with D € N.,., D=1 (mod 4).
b) bo = %- [1 + me - (-1)¥fg] for some m € Z, where e, f, and g are defined by
(1).

If this condition is fulfilled, then
D= (2bg - 1)2 + 4mf - 4« (-1)kg2.
Definition: For a symmetric sequence of positive integers (by, ..., bx-1) (k2 1)
let 9'(by, ..., bg_1) be the set of all D € N, with D = 1 (mod 4) and

1+ VD
5 = [bo, bl’ cees by Zbo - 1] for some bO € N,.

Corollary 1A: Let (by, ..., bg-1) be a symmetric sequence in N, and define e,
f> g by (1). Then the following assertions are equivalent:

@) D'(bys «-us by ) = 0.
b) Either ¢ =1 (mod 2) or e = fg + 1 0 (mod 2).

If b) is fulfilled, then gw(bl, e bk—l) consists of all D€ N,, D =1
(mod 4), which are of the form

D = e?m? + [4f - 2+ (-)kefgl * m + [f2g9% - 4+ (-1)kg?]
with m € Z satisfying 1 + me - (-1)Xfg > 0.
Corollary 2A: 2'(1, ..., 1) = 0 (always).

11

3

Theorem 2A: Let (by, ..., bx-1) (k 2 1) be a symmetric sequence of positive
integers, define e, f, g by (1), and suppose that either e = 1 (mod 2) or
e = fg+1=0 (mod 2). Let P’ be the set of all odd primes p with p[e and

() -

i) I1f D € 9’(b1, cees bk—l) and p € P', then p,{D.

ii) Let P be a finite set of odd primes, P N P’ = ¢ and (wp)pcp 2 sequence in
N. Then there are infinitely many D € 2'(by, ..., bg-1) such that v,(D) =
wp for all p € P and v,(D) < 1 for all primes p ¢ P.

Theorem 3A: Let (b1, ..., by-1) (k 2 1) be a symmetric sequence of positive
integers. Then 2'(by, ..., bg-1) = ® if and only if k is even, k = 2%, and
b, = 0 (mod 2).
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