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1. If D > 1 is a rational number, not a square, then has a (simple) con-
tinued fraction expansion of the form 

fD = [b0, b19 ..., bk_l9 2b0] 

with & > 1 and positive integers b± such that the sequence {b\9 . ..5 £&-].) is 
symmetric, i.e., 2^ = Zty-̂  for all i e {1, . . . , k - 1 }. Necessary and suffi-
cient conditions on ^Q, ..., b^-i which guarantee that D is an integer are 
stated in [3; §26]. Recently, C. Friesen [1] gave a fresh proof of these 
conditions. He deduced, moreover, that for a given symmetric sequence {b\, 
...,2>k_ l) there is either no integral D such that the continued fraction expan-
sion of VD has the given sequence as its symmetric part or there are infinitely 
many squarefree such D. 

In this paper, I shall prove a more precise statement. Starting with the 
conditions as in [3; §26] I will show that, given a symmetric sequence which 
meets these conditions, there are infinitely many D with prescribed p-adic 
exponent Vp (D) for finitely many p and p^JfD for all other p, such that VD has 
the given sequence as the symmetric part of its continued fraction expansion. 
Moreover, I will show that about 2/3 (resp. 5/6) of all symmetric sequences of 
the given even (resp. odd) length are symmetric parts of the continued fraction 
expansion of VD for some integral D. Finally, I consider the corresponding 
questions for the continued fraction expansion of (1 + VD)12 for an integral 
DEI (mod 4). 

2. I begin by citing Satz [3; 3.17] in an appropriate form. 

Theorem 1: Let (&]_, ..., bk-\) (k > 1) be a symmetric sequence in N+ and let 
b$ e N+. Then the following assertions are equivalent: 

a) [bQ9 bl9 ..., bk_l9 2b0] = /D with D e N +; 

b) Z?0 = — • [me - (-l)kfg] for some 777 € Z, where e9 f9 and g are defined by the 

matrix equation 

<" (? £)-&'(?' *)• 
If this condition is fulfilled, then 

(2) D = b\ + rnf - {-l)kg2. 

In order to state more precise results, I introduce the following notation. 

Definition: For a symmetric sequence of positive integers {b\, . . . 9 b^-i) (k > 1) 
let 

be the set of all K N + with T/5 = [bQ9 bl9 . .., bk_l9 2bQ] for some bQ e N+. 
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Corollary 1: Let (2?l5 . . . , bk-i) be a symmetric sequence i n N+ and de f ine e, f, 
g by ( 1 ) . Then the fo l lowing a s s e r t i o n s a r e e q u i v a l e n t : 

a) &(b19 . . . , bk_1) * 0. 
b) E i t h e r e = 1 (mod 2) or e = fg E 0 (mod 2 ) . 

If b) i s f u l f i l l e d , then ^(Z?l s . . . , -fr^-i) c o n s i s t s of a l l D G N+ which a r e of 
the form 

(3) D 4 / - ( - 1 ) ^ 777 + " ( - 1 ) ^ k „2 ~f2g2 

i - m -r I : 

J L 
with m e Z satisfying we - (-l)k fg > 0. 
Proof: The conditions stated in b) are necessary and sufficient for the exist-
ence of m e Z such that 

^0 = | . [me _ (-!)*/£] 
is a positive integer. Inserting this expression for £>Q in (2) yields (3). D 

Applying Corollary 1 to the special sequence (JD\9 . .., bk-\) = (1> •••> 1) 
gxves 

\f g) V^.j Fk_2)> 

where (Fn)n>_l is the ordinary Fibonacci sequence defined by 

P_! = 1, F0 = 05 P n + 1 = Fn + F n _ l o 

Taking into account that Fk E 0 (mod 2) if and only if k = 0 (mod 3), I obtain 

Corollary 2: 0 ( 1 , . . . , 1) * 0 i f and only i f /c ^ 0 (mod 3 ) . 

(fc- l) 
3. Now I investigate the possible prime powers dividing D E @(bi, . .., bk-\) 
for a given symmetric sequence (&]_, . .., bk-\) . 

For n € Z, n * 0, and a prime p, set 

z;p(n) = w if pw\n, pw+l)(n (w > 0) . 

The following result is an immediate consequence of the arguments given in [2; 
§2]. 

Lemma: Let F(X) = AX2 + BX + C e Z[Z] be a quadratic polynomial. For a prime 
p, set 

EP(F) = {w E N\vp(F(x)) = w for some x e Z }. 
Let P be a finite set of primes, wp E Ep(F) for p E P, and suppose that, for 
every prime p £ P, the congruence P(x) E 0 (mod p2) has at most two solutions x 
(mod p2). Then there exist infinitely many x E N, such that 

vv(F(x)) = wp for all p E P 
and 

Vp(F(x)) < 1 for all primes p £ P. 

Now let (Z?i, ..., bk-i) (k > 1) be a symmetric sequence of positive inte-
gers. Define e> f, and g by (1) and, depending on these numbers, for every 
prime p, a set Ep = Ep(e, f9 g, k) C N of possible exponents as follows: 

a) p * 2. /r-1^\ 
({0}, if e E 1 (mod 2), pje, and (̂  p

; j = -1; 
Ep = I 

( N, otherwise. 
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b) p = 2, e = 1 (mod 2): 

E. ({0,1}, if k = 1 (mod 2); 
2 (N\{1, 2}, if fe E 0 (mod 2). 

cj p = 2, e E /£ = 0 (mod 2): 

„ _ /N+, if e E 2, g E 0 (mod 4); 
^9 "IN, ot J2 (N, otherwise. 

With these definitions, it is possible to state Theorem 2, which general-
izes the results of [1]: 

Theorem 2: Let (b\9 . .., 2?fc-i) (k ^ 1) be a symmetric sequence of positive in-
tegers, define e9 f, and g by (1), and suppose that either e = 1 (mod 2) or 
e E /^ E 0 (mod 2). For a prime p, let Ep = E (e,f, g9 k) be defined as above. 

i) If D e9{bi, •••» *p-i)» then t>p (Z?) e #p for all primes p. 

it) Let P be a finite set of primes and Wp E Ep for p E P. Then there are in-
finitely many D E @(bi» ..., ̂ -i) such that Vp(D) = wp for all p E P and 
Vp(D) < 1 for all primes p £ P. 

Proof: 

Case 1. e E \ (mod 2). By (1), eg - f2 = (~l)k+l and thus / + g = 1 (mod 
2). It follows from (3) that D E N if and only if /w is even. Set 77? = 2n; 
then, by (3), 

£ £ ~ (-l)Vl 
. P2^2 

(4) 2? = D(n) = e2n2 + [2/ - {-l)k efg] • n + 

By the above Lemma, it is enough to show that for every prime p the following 
two assertions are true: 

1. Ep = {vp(D(x))\x e Z } . 

2. The congruence D(x) = 0 (mod p2) has at most two solutions x (mod p 2 ) . 

From (4) I obtain, by an easy calculation, 

D(n) e2n + f - (-1)*^' 
2 

£>'(n) = 2e2n + 2f - (-l)k efg 

t-Dk 

If p\e, p * 2, the congruence D{x) = 0 (mod pw) has exactly one solution x 
(mod pw) for every w > 1 and thus there are a; e Z with ?;p (£>(#)) = w for every 
W > 0. If pje, p * 2, and l(-l)k/p] = -1, the congruence D(x) E 0 (mod p) has 
no solution. If p\e, p * 2, and [(-l)fe/p] = 1, the congruence D(x) = 0 (mod p) 
has two different solutions; these satisfy DT(x)j£0 (mod p) and, therefore, for 
every W > 0, there are x E Z with VP(D (x)) = ^, and the congruence Z7(#) = 0 
(mod p2) also has exactly two solutions modulo p2. 

If k E 1 (mod 2), the congruence D(x) = 0 (mod 4) is unsolvable, but since 
Z?(0) £ 2?(1) (mod 2), there are a? e Z with ^2(^(x)) = w for w = 0 and w = 1. 

If k = 0 (mod 2), then 

£(n) (n + / + ~Y) - 1 (mod 8); 

thus D(x) E 0 (mod 2) already implies D(x) = 0 (mod 8), the congruence £(#) = 0 
(mod 4) has exactly two solutions x (mod 4), and for every w > 3 there are x E 
Z with v2(D(x)) = W. 

Case 2: e E fg E 0 (mod 2). By (1), eg - /2 = (-l)k+1; thus, fc = 0 (mod 
2), / = 1 (mod 2), and e# = 0 (mod 8). It follows from (3) that D e Z for all 
77? E Z; therefore, I have to consider the polynomial 
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D - D M =^.mi + (f-eJf).m + (q£-gi). 
Again it is enough to show that for every prime p the following two assertions 
are true: 

1- E
P = ivp(D(x)) \x E Z}. 

2. The congruence D(x) E 0 (mod p2) has at most two solutions x (mod p2) . 

First, observe that 

e*DQn) = (£ • m + f - ^ff - 1. 
If p * 2, the congruence D(x) E 0 (mod p) has at least one and at most two 

solutions x (mod p) , and these satisfy Dr (x) z' 0 (mod p) . Therefore, for every 
W E N, there are x E Z with i?p (£(#)) = W, and the congruence £(#) E 0 (mod p2) 
has at most two solutions x (mod p 2 ) . 

Suppose now that e E 2 (mod 4) and ^ E 0 (mod 4) . Then £(777) E m2 + fm (mod 
4), and it follows that D(jri) = 0 (mod 2) for all /??, D' (m) = 1 (mod 2) for all 
tfz, the congruence D(x) E 0 (mod 4) has exactly two solutions x (mod 4), and for 
every w E N there are x E Z with yp(£(#)) = itf. 

If e E 0 (mod 4) or g = 2 (mod 4), then the congruence D(x) = 0 (mod 2) is 
soluble, and from Dr(x) = 1 (mod 2) for all x9 it follows that the congruence 
D(x) E 0 (mod 4) has at most two solutions x (mod 4) and that, for every w E N, 
there are x E Z with vp(D(x)) = w. • 

4. In this section it will be shown that about 2/3 (resp. 5/6) of all symmet-
ric integer sequences (b\, . .., 2?fc-i) satisfy ̂ (2?x» •••» f̂c-3.) * 0- T o do this, 
define 0 : Z -> £L2(F2) by 

6(a) = (* J) (mod 2); 

for a finite sequence (b\, . .., 2?m) define 
777 

0(&!, ..., 2>J = n e(*j) G GL2iF2). 

Obviously, 0(2?i, ..., bm) depends only on b\9 . . . , bm (mod 2). Put 

••( ! J)- --(? J)-«^> 
and find a3 = T 2 = 1, ax = TO 2 [as £L2(F2) " ̂ 3]- With these definitions, the 
following holds. 

Theorem 3: Let (2?l5 ..., Z?fe-i) (fc ̂  1) be a symmetric sequence of positive 
integers. 

i) (£>!, ..., 2?fc_i) * 0 if and only if 6(2?!, . .., bk-\) * a2. 

U) I f fc i s even, k = 2£, then 0(2?i, . . . , 2?fc-l) = a 2 i f and only i f 

9(2?!, . . . , £ £ _ i ) E { T , a 2 } and 2?£ = 1 (mod 2 ) . 

Fur thermore , i f /l/£ deno tes the number of a l l 
(2?l5 . . . , bt-i) e {0, l } 4 " 1 wi th 0(2?x, . . . , 2?£_x) E { T , a 2 } , 

then 
A7 - 2*"1 + (-1)* 

1 ~ 3 

Hi) If fc is odd, k = 21 + 1, then 0(2?i, . .., 2?£-i) = a2 if and only if 

0(Z?i, ..., bz) E {a, ax}. 
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Fur thermore , i f /l/£ deno tes the number of a l l 

0(2?!, . . . , bz) e {o, 1 } £ wi th Q(bl, . . . , Z?£) G {a, a x } , 

then 

Proof: i) is an immediate consequence of Corollary 1. If k = 2% and 

A/t. t- \ (a b\/bo l\t a c\( abq abqo + 1\ 

and thus 

6(b1} .... ifc.i) = 02 - (J }) 
if and only if a = 0, c = bz = 1. Since 

(" ^ ) ^ i 2 ( F 2 ) , 

this implies also 2? = 1. Therefore, 0(2?]_, . .., b^-i) = a2- if and only if 

e(fc!, ..., ̂ .i) = (J J ) e {T> a2}. 

If k = 2£ + 1 and 

9(*1. •••' M = (" J) G GL2(F2)> 

if and only if a = b = 1 and cZ = c + 1, i.e., 

(° 5) «<••«>• 
To o b t a i n the formulas for /l/£ and /I//, c o n s i d e r the number 

An(0 = # (bx, ..., b„) e {o, i}n\e(b1, ..., b„) = O 
for any n G N+ and £ G £L2 (F2) • These quantities satisfy the recursion formulas 

Ai(o) = A1(T) = 1, 
A1U) = 0 for all ? G £L2(F2)\{a, x}, 

4z + iU) = ̂ n(Ca2) + ^ U T ) for all £ e GL2(F2), 

which have the solution 

2 n _ 1 + 2(-l)n~l 

An{o) = 4„(T) = ̂  + ^ l) , 

4nU) = 3 ̂  ; for e e ^2(F2)\{a, T}. 

Therefore, for & > 2, 

^ = ^£ = ^ _ ! ( T ) + 4£-i(a*) = ----- ^ l-^-
3 

2£ + c-n£ + 1 

N[ = 4£(a) + A.ioi) = Y^ = Nl + l , 
and these formulas remain true for 1=1. • 
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5. In this final section I formulate the corresponding results for the con-
tinued fraction expansion of (1 + /D)/2 for D = 1 (mod 4); as the proofs are 
very similar to those for /D, I leave them to the reader. (For Theorem IA, see 
Satz [3; 3.34].) 

Theorem IA: Let (b\9 ..., bk-i) (k > 1) be a symmetric sequence in N+ and let 
Z?o e N + . Then the following assertions are equivalent: 

i + SD a) [bQ9 b l 9 ..., b k _ l 9 2b0 - 1] = — - — with D e N+, D = 1 (mod 4). 

b) Z?Q = — • [1 + me - (~l)kfg] for some m € Z, where e, f, and g are defined by 

(1). 
If this condition is fulfilled, then 

D = (22?0 - l) 2 + 4m/ - 4 • (-l)^2. 

Definition: For a symmetric sequence of p o s i t i v e i n t e g e r s (&]_, ...,bk-\) (/c ^ 1) 
l e t 9'{bi, . . . , i fc- i ) be the s e t of a l l £ e N+ wi th D = 1 (mod 4) and 

= [Z?Q, Z?x, . . . , bk_15 2bQ - 1] for some b0 e N+. 

Corollary IA: Let (&]_, . . . , bk-\) be a symmetric sequence in N+ and de f ine e, 
f, g by ( 1 ) . Then the fo l lowing a s s e r t i o n s a r e e q u i v a l e n t : 

a) @r(bl9 . . . , ' V i ) * 0-
b) E i t h e r e = 1 (mod 2) or g = fg + 1 = 0 (mod 2 ) . 

I f b) i s f u l f i l l e d , then@'(bl9 . . . , bk_l) c o n s i s t s of a l l D e N + , D = 1 
(mod 4 ) , which a r e of the form 

D = e2m2 + [ 4 / - 2 • ( - l )*e; fe] • m + [ / V - 4 - (-1) V l 
wi th 77? e Z s a t i s f y i n g 1 + me - {-l)kfg > 0. 

Corollary 2A:@'(l, . . . , 1) * 0 ( a l w a y s ) . 

Theorem 2A: Let (2?i, . .., bk-\) (k > 1) be a symmetric sequence of positive 
integers, define e9 f9 g by (1), and suppose that either e = 1 (mod 2) or 
e = fg + 1 E 0 (mod 2). Let P' be the set of all odd primes p with p\e and 

(T) - -1-
0 If 0 e 0'(2>i, . .., fcfc-i) and p e Pr, then p ^ . 
xO Let P be a finite set of odd primes, P D PF = 0 and (wp)peP a sequence in 

N. Then there are infinitely many P e $>'(b\9 . .., &&_i) such that yp(P) = 
Up for all p e P and Vp(D) < 1 for all primes p <£ P. 

Theorem 3A: Let (Z?i, ..., bk-\) (k > 1) be a symmetric sequence of positive 
integers. Then @f (b\9 ..., &&-i) = 0 if and only if Zc is even, k = 21, and 
Z?£ E 0 (mod 2) . 
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