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The purpose of this paper is to study partitions of positive integers for
which Euler's totient function is endomorphic. That is, n = a; *+ .-+ +a; is a
¢-partition if 7 2 2, and ¢(n) = ¢(a1) + oo+ ¢(ay).

Questions related to two-summand ¢-partitions have been considered by the
present author [2] and by Makowski [3]; here, we generalize to ¢-partitions
with an arbitrary number of summands. Results include: characterizations of
positive integers which have at least one ¢-partition and of those which have
only one ¢-partition; constructive proof that any prime p has exactly w(p) ¢~
partitions; and techniques for constructing ¢-partitions and reduced ¢-
partitions for various types of positive integers.

Throughout the paper, p and ¢ will denote distinct primes and » will denote
a positive integer.

Definition 1: A square-free n is simple if n = 1 or n has maximal prime divisor
p and qln for every prime g < p.

Lemma 2: 1f s is simple, n < 2g, and n # g, then E%%T > 6%%7'
Proof: Let s = 2 +3 ... «p,, and let 25 > n = qjl .- q'* for q; < ... < q,.

Since n < 28, we have kX < 7, and since s is simple, we have q; > ps for each
1 =g <k. If k=4andg; =p; for every 1 < j <k, thenn = s. Thus, k < ¢
or q; > p; for some 1 < j < k. In either case,
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Theorem 3: n has at least one ¢-partition iff » is not simple.

Proof: (i) Let n be nonsimple. Then there exists a prime p such that p“[n for
a > 1, or n is square-free with maximal prime divisor p and there exists q < p
such that q*n.

Suppose p®|n for o > 1, and let n = p®. Then ¢(n) = o(p*t) = po(p*~1t).
Hence, n = po~lt + ... + po-lf is a ¢-partition.

p summands

Now suppose »n 1s square-free with maximal prime divisor p and there exists
g < p such that gfn. Let n = pj and p ~ ¢ = a. Then

d(pd) = d(PIe(d) = (p -~ oG = (@ + q - 1)e(J)
=a¢(d) + (g - D) = ap(@) + ¢(qd)-
Hence, n = J + .-« + j + gj is a ¢-partition.
nds

(ii) Suppose n = 2° 3+ ... e p is simple and n = a; + .-- + a; 1is a ¢-par-
tition. Let a; be a summand of the partition. Since a; < mn, it follows from
Lemma 2 that
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Hence,
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This contradiction completes the proof.
Lemma 4: 1f n = ay + .-« +a;, is a unique ¢-partition of n, then each summand
is simple.

Proof: Suppose n = a; + --- + a; is a unique ¢-partition and some summand a; is
not simple. Then, by Theorem 3, a; has a ¢-partition aq; = by + ... + Dby; thus,
no=ap teeetajoy t by beeet by tazyy +--- + a; 1s a ¢-partition of n which
is different from n = a; + ..+ + a,.

Lemma 5: If a unique ¢-partition of »m has two equal summands, then n = 2s for
s simple.

Proof: Suppose m = s + s + a; + ... + q; is a unique ¢-partition of n. If some
summand a; * 0, then n = 28 + a; + --- + a; is a different ¢-partition of =n.
Therefore, each a; = 0 and n = 2s. By Lemma 4, s is simple.

Theorem 6: n has a unique ¢-partition iff n = 2s for s simple or n = 3.

Proof: (i) Suppose n has a unique ¢-partition. Then, by Theorem 3, # is not
simple.

If n is square-free with maximum prime divisor p and g < p such that q*n,
let n = pj and p - g = a. Then, from the proof of Theorem 3(1i), we have

n=g+ ...+ 7+ qj is a ¢-partition.
T omands
And since it is unique, Lemma 4 implies that J is simple and Lemma 5 implies
that a = 1. Thus, p - g = 1. Hence, we have p = 3, g = 2, and n = 3.
Now suppose p%[n for o > 1 and »n = p%t. Then

no=ptTlt + ...+ p“'ltlis a ¢-partition,
p summands
and since it is unique, we have that p“'lt is simple (Lemma 4). Therefore, by

Lemma 5, n = 28 for s simple.

(ii) It is obvious that 3 = 1 + 2 is a unique ¢-partition of 3.

Let n = 2s for s simple. C(learly, 2s = s + g is a ¢=-partition. Suppose
2s =qp + -+ +aq, is a different ¢-partition. Then there exists a summand
aj # 8. Since a; < 2s, we have, by Lemma 2, that

T A
¢las) $(s)°
This gives the contradiction,
2s9(s)  26(28) s

28 = o(s)  ¢(s) ¢(3)(¢(a1> toeee + (ag))

s s a a:
= $T§7¢(al) + ..+ $757¢(a¢) > ETE;Y¢(Q1) + oo + ¢(ai)¢(ai)
=a; + - +ay.
Hence, 25 = 8 + s 1is a unique ¢-partition of n.
Theorem 7: p = a) + -+« + a;, 1is a ¢-partition iff one summand is prime and

every other summand is 1.
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Proof: (1) p =1+ ... + 1 + g is clearly a ¢-partition for every prime g < p.
p - q summands
(ii) Let p = a; + --- + a; be a ¢-partition. It is obvious that at least
one summand is greater than 1. Suppose the two summands, aj and a,, are each

greater than 1. Then ¢(a;) < a; - 1 and ¢(ay) < ap - 1. Therefore, we have the
contradiction

a + oo ta; - 1l=p-1 o (p)
= ¢(ay;) + -0+ d(ay)
Assume a; > 1. Then a; =p - ¢ + 1, and

p-1=06(@ = o(1) + - + 6(1) + ¢(ay)
% -1 summands
Hence, ¢(a;) = p - 7 = a; - 1. Therefore, @ is prime.

IA

ap + - ta; - 2.

7 -1+ ¢(ay).

As an immediate consequence of this theorem, we get
Corollary 8: A prime p has exactly m(p) ¢-partitions.

We now provide two very general techniques for constructing ¢-partitions
for a particular .

1. 1If n is even, pln, p = 2'+ ... + 2% + ¢, gfn, and n = 2%pm, then
= 2% % 4+ o+ 2% % + 2%mg is a ¢-partition.

Some results regarding how many ways a particular prime p can be written as
the sum of a prime and powers of 2 are given in [1].

Definition 9: A positive integer m is prime dependent on n if every prime divi-
sor of m is a divisor of n.

Notice that if m is prime dependent on »n then ¢(mm) = mp(n).

2. 1If n = p®t where a > 1 and p*t, and p = a; + .-+ + a; such that
each summand is prime dependent on 7, then
n = alp“"lt R aip“‘lt is a ¢-partition.
Notice that for every p such that pa|ﬂ for a > 1 we get a ¢-partition of =
with p summands by letting
p=1l+--- +1
p summands

in construction 2. If n is even, for each such p we can get ¢-partitions with
x summands for every x satisfying a < x < p, where ¢ is the number of nonzero
digits in the binary representation of p.

Definition 10: If n = ay ++--+a; and a; = by +.--+ b; are ¢-partitions, then

n=>by + <+ +b;+ay+ -+ + a; is an expansion of n = a; + ... + a;.
Expansions are clearly ¢-partitions.

Definition 11: A ¢-partition is reduced if each of its summands is simple.

It is obvious that a ¢-partition can be expanded iff it is not reduced. So
every nonsimple number has at least one reduced ¢-partition. The following are
examples of reduced ¢-partitions for various types of n:

(i) 29 =2+ «v0 + 2
29-1 summands
(A1) p* =1+ e + L+ 2+ «00 +2

pa—l(p_z) pu—l
summands summands
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(1ii) 29p% = 2 + cvev + 2 + 6+ .-+ + 6

za-lpotjl(p_B) za-lpa—l
summands summands

(i)Y pg=Ll+ e+ 1L +2+ .- +2+6
(p-2)(q-2) p+qg-5

summands summands

Several open questions about two-summand ¢~partitions could be resolved if
it can be shown that reduction is unique. Evidence and intuition strongly
suggest that it is; but it seems that a proof may be quite difficult. We close
with the conjecture: Every nonsimple number has exactly one reduced ¢-
partition.
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