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In 1977, Kenneth B. Stolarsky [6] introduced an array s(Z, j) of positive
integers such that every positive integer occurs exactly once in the array, and
every row satisfies the familiar Fibonacci recurrence:

s(Z, j) =s(i, g - 1) +s(i, § - 2) for all j =2 3 for all 7 > 1.

The first seven rows of Stolarsky's array begin as shown here:

1 2 3 5 8 13 21
4 6 10 16 26 42 68
7 11 18 29 47 76 123
9 15 24 39 63 102 165

12 19 31 50 81 131 212
14 23 37 60 97 157 254
17 28 45 73 118 191 309

Hendy [4], Butcher [2], and Gbur [3] considered Stolarsky's array, and Morrison
[5] and Burke and Bergum [l, p. 146] considered closely related arrays. In
particular, Gbur discussed arrays whose row recurrence is given by

s(i, J) =as(i, g - 1)+s(Z, § - 2),

which, fora = 1, is the row recurrence for Stolarsky's original array. In
this note, we show that any one of a larger class of second-order recurrences
can be used to construct infinitely many Stolarsky arrays.

Define a Stolarsky pre-array (of q rows) as an array s(Z, g) of distinct
positive integers satisfying

s(Z, j) =as(Z, §g - 1) + bs(Z, § - 2) for all § 2 3 for 1 << < g,

where a and b are integers satisfying 1 < b < a, and the numbers 1, 2, 3, ...,
q are all present in the array. By a Stolarsky array we shall mean an array
s(Z, ) whose first g rows comprise a Stolarsky pre-array for every positive
integer g. For the following Stolarsky pre-array, g = 2, a = 1, and b =1:

1 4 5 9 12 23 37 60

2 8 10 18 28 46 74 120
In order to construct Row 3 beginning with s(3, 1) = 3, note that s(3, 2) can-
not be 4 or 5, as these appear in Row 1; nor 6, as then s(3, 3) = 9, already in
Row l1; mor 7 nor 8 nor 9 nor 10 nor 11. These observations illustrate the

problem: once q rows of a (prospective) Stolarsky array have been constructed,
can Row g + 1 always be constructed? We shall show that the answer is yes, and
that, actually, Row g + 1 can be constructed in infinitely many ways.
The symbols Si, Sy, ... will always represent a sequence of the following
kind:
(i) s; >0, s, >0, and s, = as, . + bs,_, for n > 3,

where a and b are integers satisfying 1 < b < a. Let

_a + Ya2 + 4b
2

= and B =a - a,
so that a > 1, -1 < B < 0, and the identities a? = qo + b and Bz = gf + b yield
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(i1) s, = apo™ + blB” for all n =2 1, where
SIB - S, S, = 80
a, = —= and b, = ———,
L a(g - o) L g8 - @)

Similarly, the symbols ¢;, %5, ... will always mean a sequence given by

tn = atn_l + btn_z = CZZOL” + szn’
where
tlB - tz tz - tlob
Qy, = ——= and b, = ~——, and t; > 0, t, > 0.
CTCRE) 2 BB - a) ! z

Lemma 1.1: There exists a positive integer N such that s, = [as, + %] for
every n 2 V. The least such N is 2 + [loga/b2|a51 - SZI]-

ala”+l + b16n+1 + ablﬁn — b18n+1

= Sn+1 + ban(O‘ - B),

so that 8,41 = [as, + %] if and only if 0 < b1B"(a - B) + % < 1. This is equi-
valent to -1 < 2(as] - 8)B"” ! < 1, hence to

()™ - 1o < o

o 2]asy - s,

Proof: as, = o(a,o” + b;B")

and hence equivalent to n - 1 2 loga/bZIasl - 32], as required.

Lemma 1.2: Suppose s is not among t;, t2, ..., and ¢; is not among S, 8o,
Let

M =2+ [log,, 2|as) - s3] and N =2+ [log,,2|at; - tp]].

Ifm=M, n >N, and S, < t, <s < t <

m+1° e+ 1 n+l = Smi2
Proof: Suppose m > M and n = N. By Lemma 1.1, s;4.1 = [as; + %] for every 7 = m
and t;,; = [at; + %] for every ¢ 2un. So, if ¢, = 8,41 then

then s < ¢t < s <
m n

lot, + %] = [asne) + %],
so that ¢,.] = Spip. But then at, + bt,_, = aspy1 + bs,, so that t,.; = s,.

But then at,_) + bt,_, = as, + bs,_}, so that t,_, = s,-;. Continuing, we even-
tually reach ¢, = s, for some p 2 1 or else ¢4 = 8; for some g 2 1, contrary to
the hypothesis.

Now that we have s, < ¢, and ¢, < 8,41, the remaining inequalities in the
asserted chain follow by induction: s, < ¢, implies

[asp + %] < [atq + %],
so that s,,1 < tg4+1, and ¢y < s, similarly implies f,47 < Sp4).

Lemma 1.3: Suppose 81, Sy, and t; are given and ¢; > 8;. For k =2 1, let t;m
denote the sequence tj, tp = t; + k, t3 = aty, + bty, ... . Then there exist
positive integers C and X, both independent of k, such that if k > X and m >
Cllog, k] and n is the index satisfying s, < tﬁg < 8,+1> then

< 0

m+ 1 n+l < Spe1 < v

S, < tim < s

Proof: Let

M=2+ [loga/bZIasl - 32'] and N(k) = 2 + [loga/bzlatl— t] - k]].

Let p(k) be the index satisfying

()
Spk) < Euo S Spky+1-

340 [Nov.



SECOND-ORDER STOLARSKY ARRAYS

Clearly, there is a positive integer X; so large that p(k) = ¥ for all k = K.
For such k, Lemma 1.2 gives

(k)
D Spy+h < Tw+n < Spao+ien for all h = 0.
Also, for all k 2 Ky,
%) K = k) _ N (k)
alO‘-p + blﬂp( = SP(k) < t/V(k) = CZZOL + bZEN(k) < (az + lbzl)OCN(k).
Let 4, B, K, be positive integers, with K, > K;, all independent of kX, satisfy-
ing a, + |by| < A + Bk for all k > Ky3 to see that such A and B exist, observe
tIB—(tl'f'k) tl‘f‘k—f;l(x
a, = —————— and b, = ———.
a(B - a) B(B - a)
For all such k,

a,0P% < (4 + BK) o + Q(k), where @(k) = 1 + |b,8P%).
Then
alap(m < Qk) + (4 + Bk)u2+1ogwbﬂuh-trkl,

so that R
a;aP% < Q(k) + o2(4 + Bk) (2|at, - £, = k[)17 108D,

Applying log, to both sides and the inequality log,(x + y) < log,x + log,y to
the resulting right-hand side yields

p(k) + log a; < logaQ(k) + 2 + log,(4 + Bk)
I S
1 - log,b
Now limk+mQ(k) = 1, so that there must exist positive integers ( and K3, inde-
pendent of k, with Ky > K,, such that

p(k) + 1 < C[logy,k] for all k > Ks.

For such k, if m is any integer that exceeds C[log k], then m = p(k) + & for
some A 2 1. For n = N(k) + m - p(k), the stated chain of inequalities follows
from (1).

Theorem: Let S = {s(x, y): 1 <x <g¢g, y 21} be a Stolarsky pre-array. Sup-
pose t; ¢ § and ¢; > max{s(x, 1): 1 < x < g}. Then there exist infinitely many
numbers %, such that no term of the sequence t,, t,, t3 = at, + bty, ... lies
in S.

+ logu(Zloctl -1 - kl).

Proof: Suppose, to the contrary, that there are at most finitely many numbers
k = 1 for which the sequence ¢y, tp, =t} + k, t3 = at, + bt;, ... contains no
element of S. Let kl be the greatest of these k. Let t%m, tgd, ... denote the
(a, b)-recurrence sequence whose first two terms are ¢; and ¢, = ¢t + k; + k.
Then, for every positive integer k, the sequence tam, t(), ... contains a term
of S. That is, there exist indices j(k), x(k), and y(k) for which

2) tioy = s(@(), y(k)), where
(3) 1 < x(k) < q.
On the other hand, by Lemma 1.3, there exist constants (i, Cp, ..., Cq and Kj,

Ky, .., Kq, all independent of k, such that for & = 1, 2, ..., q-» if
Yo > Cpllogykl
where k > K, and j, is the index for which
s(x, y,) < tg? < s(x, y, + 1),
then equation (2) cannot hold for any j(k) < j,. Accordingly, (2) implies
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(4) 1 < y(k) < Cranllog k] for all k > K = max{ky, Ky, ..., Kgl.

Now, since the index x(k) in (2) is < ¢, we have s(x(k), 1) < tik)for all k, by
hypothesis, and also s(x(k), 2) < t;k)for all k larger than some K*. Therefore,
in equation (2), j(k) < y(k), so that

(5) L < j(k) < Cpyllog k] for all k > K*.

Let m(k) = [log, k] max{C}, Cp, ..., Cq}. Then, for all k > K = max{k, K*},
we have
1 <ax(k) g, 1 <yk) csmk), 1 < (k) < m(k).

Let k' be any integer large enough that k' > g[m(K+ k’)]?%. Then, for k = 1,
2, 3, ..., k', we have

1l <xe(K+ k) <qg, 1 csyK+k) sm(K+ k"), 1 <j(K+k) <sm(K+ k").

Now, the total number of distinct triples (x, y, J) that can satisfy three
such inequalities is the product g[m(K+ k')] 2, but we have more than this
number. Therefore, there exist distinct X, and k, for which

m(ku> = x(kv)’ y(ku) = y(kv)’ j(ku) = j(ku)-

This means that the sequences

(k) (k) (k) (k)

Tis bo s ey t,j(ku)’ and Tys Ty, 7 .ee, tj(kv)’
have identical first terms and identical j(ku)th terms. But this implies
(k) _ (k)
ty =1,

contrary to k, # k,. This contradiction finishes the proof.
Conclusion

An obvious consequence of the theorem is that any Stolarsky pre—array can
be extended to a Stolarsky array. For each new row, one need only choose #; to
be the least positive integer satisfying the hypothesis of the theorem; that
is, the least not yet present in the array being constructed. This choice
ensures that every positive integer must occur in the constructed Stolarsky
array.
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