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1. Introduction 

In the early thirteenth century there appeared the book Liber Abaci by the 
mathematician Leonardo of Pisa [7], who also became known as Fibonacci (see 
also [2]). In it a problem concerning an ideal case of the reproduction of 
rabbits is treated, and the sequence 

(1) F = 1, 2, 3, 5, 8, ... 

is introduced. This sequence has since become known as the Fibonacci Sequence. 
One of its features is the recurrence relation 

(2) an = an_1 + an_2, for n > 3. 

In the second half of the nineteenth century E. Lucas [8], who had actually 
coined the term Fibonacci Numbers, introduced a similar sequence connected 
closely to that of Fibonacci, 

(3) L = 1, 3, 4, 7, 11, ..., 

obeying the same recurrence relation as F. The sequence L has since become 
known as the Lucas Sequence [3] (see also [4]). 

Since then the generalized sequences of both kinds have been introduced. 
For both, the recurrence relation is 

an = aan_1 + oan_2, 

where a and a are prescribed numbers. 
We shall also stipulate aQ = 1 or 2 according to whether the sequence is a 

generalized F or a generalized L, respectively. The recurrence relation holds 
already for n = 2 (see also [3]). In [10] Wall treated generalized Fibonacci 
sequences modulo an integer 77? and showed that some are periodic mod (jri) (see 
also [6], [11], and [12]). 

Now let a and a be two arbitrary complex numbers and let the terms of the 
generalized Fibonacci (Lucas) sequence be f$ = 1, fi - a (g$ = 2, g^ -a). It 
turns out that in some cases such sequences are periodic. Put, for example, 
a = 1, o = -1. Then both sequences are periodic of period 6. 

In this paper we wish to characterize those sequences which are periodic; 
in other words, to specify precisely for which ordered pair (a, a) the corre-
sponding Fibonacci (Lucas) sequence is periodic. We shall also specify in each 
relevant case the period Ts T being the least positive integer for which 
an + T = an for every n. 

Let us first look at degenerate cases. The case a = a = 0 is trivial with 
T = 0. If just one of the two vanishes, the remaining parameter is necessarily 
a root of unity, a trivial case being a = 1, a = 0, f = 1. 

We may, therefore, assume both parameters to be nonzero. 

2. Periodic Row-Column Matrices 

Let n > 1 be a positive integer. Consider an n x n-matrix A ~ {d-tj) over 
the complex field with a^j - 0 if both i and j are greater than one. Put 
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n 

J = 2 

We shall name such a matrix a (one-row)-(one-column) matrix or5 in short, an 
RCM. 

The characteristic polynomial of A is Xn - aXn~^ + oXn~2 so that the two 
nonzero eigenvalues of A satisfy the quadratic equation 
(4) X2 - aX - a = 0 

whose roots are 

^ - i -- /(tf^-
It follows that for n > 2 the spectrum of A depends solely on a and a and is 
independent of n. 

For a = a2/4, the matrix A is neither diagonalizable nor periodic for any 
nonzero value of a. 

The polynomial f(z) = z2 - az - a appears in a paper by M. Ward [11], among 
others. Ward also considers what he calls degenerate sequences in which zeros 
appear periodically, with periods 2, 3, 4, and 6, although the sequences as 
such are not periodic (see, e.g., [11, Th. 3]). 

Except for the case a = -a2 /4, the two nonvanishing eigenvalues of A are 
distinct. In addition, we have rank A = 2, and hence, A is diagonalizable. For 
i = 1, 2, we have 
(5) X\ = aXi + a, 
(6) Xi + Xz = a. 
Let j be a positive integer. Define 

Tj- = Tr A^ 

We have 
Yi = a> 

y2 = X2 + X2 = aXj + a + aX2 + a = a2 + 2a. 

Also, for j > 3, equalities (1) and (2) imply 

(7) y. = X{ + X{ = X{~ZXJ + x(~2X2
 == a A l " 1 + a A l " 2 + aX2~l + a A 2 ~ 2 

= a^.-! + aYj._2. 

We thus have a recurrence formula for y-, J - 3, displaying a generalized Fibo-
nacci sequence. We now turn to the possible periodicity of an RCM. A neces-
sary condition for A to be periodic is | X-, | = | X~ \ = 1 • It also follows that A 
is periodic if and only if y, is periodic. 

Putting 

I a2 + o 

we have 
a , , a 

X1 = - + W9 X2 = -r - W. 
For both X^ and X2 to be on the unit circle, it is necessary that 

11 r, ^F 
\w\ = J 1 — , and arg w = arg a ± -~. 

Set arg a = <|) and arg X1 — <(> = ip. Then arg X2 = arg X-^ - 2I|J, so that 

arg X1 = a + ip and arg X2 = a = ty (see Fig. 1). 
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FIGURE 1 

Then 

tan ty 
1 -

\a\ 
- 1. 

Now set 

(8) ±i|> + (j) = arc tan(± 1 )+ are a 
2JT 

s 

p,-

where £ = I for the plus sign and £ = 2 for the minus sign. A necessary and 
sufficient condition for A to be periodic is that both \^ and X2 be roots of 
unity. We also find that equation (4) implies 

aX = A.(A - a) !*(</' -¥"•)(-! *</^.«) 
4 

,2i«J) i a l 2 , 2 i « _ s i 
4 / 4 

We thus have 

Theorem 1: Let A be an RCM. Then A is periodic if and only if 

(i) for both choices (±) we have TT Marg a ± arc tan /-—— - l) are rational; 

01i arg a (ii) a 

Corollary 1: Let ^ be an RCM. Then A is periodic if and only if the following 
three conditions hold. 

(i) IT-1 arg a is rational; 

(ii) TT-1 arc tan /-——- - 1 is rational; 
V \a\2 

(iii) a = -e2i ars a . 
Corollary 2: Let A be a real RCM. Then 4 is periodic if and only if 

arc tan 1 is rational and a 

312 [Nov. 



PERIODIC FIBONACCI AND LUCAS SEQUENCES 

Corollary 3: A r e a l RCM i s p e r i o d i c i f and o n l y i f 

IT l a r c t a n /—- - 1 a n d a = - 1 . 
az 

Corollary 4: Let A be a purely imaginary RCM. Then A is periodic if and only if 

I-1 arc tan / - 1 is rational and o = 1. 

Corollary 5: A necessary condition for an RCM to be periodic is that a satisfy 
the inequality 0 < \a\ < 2. 

Corollary 6: A necessary condition for an RCM to be periodic is \o\ = 1. 

Let us now seek the period T = T(A). It will clearly be the least integral 
for which both T(§ + ty) and T($ - ip) are integral multiples of 2ir. Put 

Pi p2 
For i = 1, 25 the p. are necessarily rational, so that we may put 

mi 
p. = — , with (m-9 ft-) = 1. ^ ft^ ^ ^ 

We then have 

Theorem 2: Let ^ be a given periodic RCM, Then the period T(A) is given by 
the formulas T(A) = L.C.M. (mi, m2) where the m^ are defined as above. 

We also have, for a periodic RCM, (|a|/2) = cos ty, SO that we may write 

(9) a = 2 cos tyei*. 

We may also write Xl = el^+^\ X2 = ei^~^\ so that 

Xl + X2 = elHe^ + e~^) = 2 cos i|/ e^. 

Then it is easy to see that x\ = e
ki^+^\ Xk = e

ki^~^ so that, likewise, 

yk = X\ + X\ = 2 cos(^)eki* , 

thus proving that 4̂ is periodic if and only if the traces of the powers of A 
3.1CQ. periodic. We then have 

Corollary 7: Let A be a periodic RCM with a = 1. Then A has period 6. 

Proof: We have <f> = 0 and cos \\) = 1/2, so that ip = TT/3. The result follows. 

Let us consider two examples. 

TT 1 3 
Example 1: L e t <J) = — , IJJ = TTf'11- Then 

a = 2 c o s — TT e20, o = -e10 . 
OU 

We a l s o h a v e cj) + I|J = — TT , $ - ip - - T T / 6 , SO t h a t tfzx = 1 5 , m2 = 1 2 , and h e n c e , 

T = L . C . M . ( 1 5 , 12) = 6 0 . 

Example 2: L e t a = eH/3> Then = ~e
2lTi/3. A l s o c o s $ = 1/2 s o t h a t cj) = ip = 

T T / 3 ; h e n c e , cf> + ij; = 2 T T / 3 , <|> - ip = 2TT, WX = 3 , tfz2 = 1 , a n d s o T = 3 . 

3 . T h e L e a d i n g E l e m e n t of a P o w e r of a n RCM 

L e t A be an RCM. P u t A = (a^) . L e t a ^ d e n o t e t h e (i, j ) - e l e m e n t of Ak. 
We c o n s i d e r a[k) f o r fc > 1 . P u t a • • = a . , a . -, = 3 •. We t h e n h a v e a\2) = a2 + a . 
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For i * 1 * j, we have 
(2) (2) (2) 

a l / = a a j 5 a i l = a$i> aij = $£ a j J 

ai3i = a 3 + 2 a a ' ai3'} = (al + Q ) a j 
a™ = (a2 + a) 3 , , ag> = a 3 . a j . 

Put /o = l> fl = a> fl = al + a -
Suppose that for some A: we have 

(10) afl = fk, 4 « = a ^ ^ , 
i l " p i J k - l ' aij = 6i"jJfe-2 
(fc)= ^ 4 - 1 ' 4f- 6,;«-A-2 for i * 1 x j . 

Then 
T(fc + 1) a 11 afk + ofk_1 = fk+1, 

We may use induction since 10 holds for k = 2. We thus have 

Lemma 1: Let ,4 be an RCM. Then equalities (10) hold for every i, j > 1 and for 
k > 2. 

We thus obtain 

Theorem 3: Let A be an RCM. Then the leading elements and the traces of the 
successive powers of A form a generalized Fibonacci sequence and a generalized 
Lucas sequence. 

For a = a = 1 we obtain the original Fibonacci and Lucas sequences appear-
ing in (1) and (2). We may therefore look at ROM's as generating Fibonacci and 
Lucas sequences. A particular such case has already been treated in [5] and 
also in [1]. 

We may now combine the two aspects of RCMTs, namely, periodicity on the one 
hand, and Fibonacci sequences on the other in order to draw the following 
conclusion. 

Theorem 4: A generalized Fibonacci (Lucas) sequence with complex parameters a 
and a is periodic if and only if both 

—— - 1 and TT 1 arg a 
i \ l 

are rational and a = -e^ arg a . 

Corollary 8: A generalized Fibonacci (Lucas) sequence with real parameter a is 
periodic if and only if 

TT-1 arc t a n y ^ - 1 

is rational and a = -1. The period T is determined as prescribed by Theorem 2. 

Let n > 2 be an integer. Consider a generalized Fibonacci or Lucas sequence 
for which the parameters <\> and ip are <j> = ip = u/n. Then 

A JL 1 2 l T A 

* * = ~ft~s * " 
so t h a t 

a = 2 cos — e , 

ty = 2TT 

-2i\i 
o = -e n 

so we get a periodic sequence of period ft. We may thus state 
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Corollary 9: Every p o s i t i v e i n t e g e r > 2 i s a p e r i o d for some g e n e r a l i z e d F i b o -
n a c c i (Lucas) sequence . 

For n = 2, we have to s t i p u l a t e a = 0, 0 = 1 , s i n c e c|) = \jj = TT/2. We may 
a l s o s t a t e 

Corollary 10: Every p o s i t i v e i n t e g e r i s a p e r i o d for some RCM. 

For n = 1 choose a = 1, a = 0. The g e n e r a l i z e d F ibonacc i sequence wi th 
pa ramete r s a and o sugges t t h a t the t r a c e s y, be polynomials i n a, a of degree 
k, so t h a t 

[k/2\ 

j = 0 

The coefficients (J)̂  may be established by graph-theoretical counting tech-
niques. Induction may also be used to show that 

*fci \ J i + V j - 1 J K 3\{k - 2j) ! * 
The verification is left to the reader. 

A similar formula may be found in [9]. 
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