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1. Introduction 

It is known [1] that the equation Fnx2 + Fn+iX - Fn + 2 = 0 has solutions -1 
and Fn + 2/Fns where {Fn }n> 1 denotes the Fibonacci sequence. One wonders if 
other interesting results might be obtained if the coefficients of the 
quadratic equation were some other functions of the Fibonacci numbers. The 
answer5 as might be expected? is in the affirmative. Surprisingly, however, 
the results in this paper arise in response to the following quite different 
question. Under what conditions does the quadratic equation ax2 + bx - c = 0 
have rational roots given that a, b, and c are represented by the arithmetic 
sequence n , n + r , n + 2 P in some order, where n and v are positive integers? 
In this paper, we treat only the case v - 1. 

As usual, {Fn}n>i will denote the Lucas sequence and a the golden ratio. 
Moreover, we will have occasion to use such well-known results as 

£„ - Fn+1 + Fn-l, Ln + Fn = 2Fn+1, Ln - Fn = 2Fn^, a" = (Ln + Fn/E)/2 

(see [2]). Note that Ln = Fn+x + Fn-l c a n ^e written as 

(1) Ln = 2Fn_1 + F„. 

Also, we will need the following identities from [2]: 

(2a) F2
+l = FnFn + 2 + (-1)"; 

(2b) Fn+lFn.z = FnFn_l + ( - 1 ) " + 1 . 

2 . Fibonacci Q u a d r a t i c s 

The equations 

ax2 + bx - c = 0, ax2 - bx - c = 0, 

ex2 + bx - a = 0, and ox2 - bx - a = 0 
have the same discriminant. Therefore, we shall study only the first one. Let 
us consider the case r = 1. 

Theorem 1: Rational solutions to 

(3) nx2 + (n + l)x - (n + 2) = 0 

exist if and only if 

(4a) n = F2m+l - 1 (m > 1) 

and they are 

(4b) F2m/(F2m + 1 - 1), -FZm + 2/(F2rn + 1 - 1). 

Proof: The discriminant of (3) is 

Bl = (n + I)2 + kn(n + 2) 

= 5(n + I) 2 - 4, 
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R a t i o n a l s o l u t i o n s of (3) e x i s t i f and only i f £>]_ i s a p e r f e c t s q u a r e , s ay , fo r 
example, Z?]_ = t2. Then we have 
(4c) t2 - 5(w + l ) 2 = - 4 , 

which has positive solutions t = ^Zm+l and ^ = F2m+l ~ 1 with m > 1 for n * 0, 
as shown by Long and Jordan [4, Lemma 1], although their proof can be consider-
ably simplified by the use of the identity an = (Ln + Fnv5)/2. But, by (1), 
t = 2F2rn +

 F2m+l and b = n + I = Fzm+l' Using these values in 

x = (-b ± t)/2n, 

we get (4b). It is interesting to note that the solutions are proportional to 
F2m and F2m+2, which precede and follow F2m+1, respectively. 

Theorem 2: Rational solutions to 

(5) nx2 + (n + 2)x - (n + 1) = 0 

exist if and only if 

(6a) n = F2m+3F2m (m > 1) 

and they are 

(6b) F2m+2^F2m+3> ~F2m+l/F2m' 

Proof: The d i s c r i m i n a n t of (5) i s 

D2 = (n + 2 ) 2 + kn{n + 1) 

= n2 + 4(n + l ) 2 . 

Rational solutions of (5) exist if and only if D2 is a perfect square, D2 = t 2 . 
Thus, [n, 2(n + 1), t] form a Pythagorean triplet, not necessarily primitive. 
We represent the triplet as (g2 - h2, 2gh, g2 + h2) to get 

(6c) g2 - gh - (h2 - 1) = 0. 

[Note that if it were represented as (2gh9 g2 - h2, g2 + h2) then g2 - h2 = kgh 
+ 2 and this implies g2 - h2 = 2 (mod 4), an impossibility.] But, again, g is 
an integer if and only if the discriminant of (6c) is a perfect square: 

h2 + 4(/z2 - 1) = 5h2 - 4 = s2 

or 

(6d) s2 - 5h2 = -4. 

This is the same Pell equation as before and so has solutions s = F2m+1 anc^ 
h = F2m+l- N o w 

g = (h ± s)/2 = [F2m+l ± L2m+1]/2 = (F2m+l + F2 J , -F2m = F2m + 2, -F2m. 

Since only the first solution gives positive n, 

n = g -la = F2m+2 ~ F2m+\ = ^2^ + 3^2^' 
with 777 > 1, for n * 0. In this case, using (2b) and (2a), we obtain 

b = F 2 , + 3 ^ + 2 = ̂  + 2 ^ + 1 + 1 = ^ + 2 ^ 2 . + 2 ~ F2,> + l 

F2m + 2 " ^ 2 m + 2 ^ 2 m + 1 F2m+3F2m+l ~ F2m + 2F2m and 
t = # 2 + /z2 = K2

 9 + F 2 , , = Ft?m.oF0 M, + ^ 9 , . 9 F 9 . ^ zm + z 2m + L 2m + 6 2m + l 2m + 2 2m 

Using the se in x = (-b ± t)/2n, we o b t a i n the s o l u t i o n s (6b) as c la imed . 
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The last equation to be considered is 

{n + l)x2 + nx - {n + 2) = 0. 

Instead, we investigate the equivalent equation 

nx2 + ( n - l ) x - ( n + l ) = 0 . 

Theorem 3: Rational solutions to 

(7) nx1 + (n - l)x - (n + 1) = 0 

exist if and only if 

(8a) n = F2m+lF2m (m > 1) 

and they are 

(8b) F2m-llF2m> ~F2m + ll F2m +1-

Proof: The d i s c r i m i n a n t of (7) i s 

D3 = {n - I ) 2 + kn(n + 1) = 4n2 + (n + I ) 2 , 

Rational solutions of (7) exist if and only if D^ is a perfect square, D^ = t2-. 
Thus, (2n, n + 1, t) form a Pythagorean triplet. We represent the triplet as 
(?.gh, g2 - h2, g2 + h2) to get 

(8c) g2 - gh - (/z2 + 1) = 0. 

[Note that if it were represented as (g2 - h2, 2gh, g2 + h2) then we would have 
kgh - 2 = g2 - h2 and this implies g2 - h2 =2 (mod 4), an impossibility.] As 
before, g is an integer if and only if the discriminant of (8c) is a perfect 
square: 

h2 + 4(/z2 + 1) = 5h2 + 4 = s' 
or 

(8d) s2 - 5h2 = 4 

which has positive solutions s = L2m and /z = î m ^or m - 1 ^y t^3 Lemma 2]. 
Since 

^ = {h ± s)/2 = (F2m ± Llm)/2 = (F2m + F2m-i), -F2m-i= F2m+U -F2m ^ . 

Only the first solution gives positive ni 

n = gh = i^+lF2m 

with /?? > 1, for n * 0. In this case, using (2a) and (2b), we have that 

b = F0 M,F0 - 1 = F0 (F0 - - F9 ) - 1 = F9 ,9F9 ~ (F2 + 1) 
zm + 1 2m 2/nv 2m + 2 2my 2m + 2 2m K 2m 

= ^2m+2^2m - F2m+lF2m-l 
and 

t = q2 + /z2 = F2 , + F2 = F9 _,9F9 + F0 ^,F0 , . y 2m + l 2m 2m + 2 2m 2m + l 2m -1 

Using these in x = (-Z? ± t)/2n, we obtain the solutions (8b) as claimed. 

The case v > 1 is under consideration. 
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