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INTRODUCTORY REMARKS 
An n-omino is a plane figure composed of n connected unit 

squa res joined edge on edge. In the ea r ly nineteen hundreds , Henry 
Dudeney, the famous Br i t i sh puzzle expert , and the F a i r y Chess Review 
popular ized p rob lems involving n-ominoes which they r ep re sen t ed as 
f igures cut from checke rboa rds , Solomon Golomb seems to have been 
the f i r s t ma themat i c i an to t r e a t the subject se r ious ly when as a g rad-
uate student at Harvard in 1954, he published "Checkerboards and 
Po lyominoes" in the A m e r i c a n Mathemat ica l Monthly. Since 1954, 
s eve ra l a r t i c l e s have appeared (see References) ; in pa r t i cu la r , R„ C„ 
Read [9] and Mur ray Eden [2] have d i scussed the problem of finding or 
es t imat ing the number p(n) of n -ominoes for a given n. F r o m the i r 
r e su l t s it is now known that for l a rge n 

n , x n 
cx < p(n) < c 2 

where c, and c ? a r e ce r t a in positive constants g r e a t e r than 1. In 
the f i r s t pa r t of this paper we enumera te a subset of n -ominoes and 
provide an improved lower bound for p(n); la te r we d i scuss other 
p rob lems of this so r t and conclude with a brief exposit ion of p rob lems 
dealing with configurations of n -ominoes . 

MOSER'S BOARD PILE PROBLEM 

In the following it will be convenient to have ce r t a in conventions,, 
We say the region between y = n-1 and y = n is the n row and call 
a rec tangle of width one a s t r i p . The f i rs t square on the left in a s t r ip 
located in a row is called the ini t ial square of the s t r ip ; an n-omino is 
located in the plane when some square in the n-omino exactly covers 
a square in the plane la t t ice . The set of all incongruent n-ominoes will 
be denoted by P(n) and for convenience we think of the e lements of 
P(n) located in a r b i t r a r y regions of the plane. Ignoring changes in 
posit ion due to t r ans la t ions , each e lement of P(n) has eight or l e ss 

9 
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p o s i t i o n s w i t h r e s p e c t t o 90 r o t a t i o n s a b o u t t he o r i g i n and r e f l e c t i o n s 

a l o n g the x o r y a x e s ; t a k i n g two n - o m i n o e s to be d i s t i n c t if one c a n n o t 

be t r a n s l a t e d to c o v e r t he o t h e r , we find a n e w s e t S(n) f r o m P(n) 

by i n c l u d i n g r o t a t i o n s and r e f l e c t i o n s of n - o m i n o e s in P (n) in S(n) . 

T h e p r o b l e m w h i c h i s now to be d i s c u s s e d w a s p r o b a b l y f i r s t 

p o s e d by Leo M o s e r in p r i v a t e c o r r e s p o n d e n c e w i t h t he p r e s e n t a u t h o r ; 

l a t e r he p o s e d i t in a d i f f e r e n t f o r m a t the 1963 N u m b e r T h e o r y C o n -

f e r e n c e h e l d a t the U n i v e r s i t y of C o l o r a d o . E d e n [2] a l s o d i s c u s s e s 

t he p r o b l e m , but h i s r e s u l t s a r e no t a s c o m p l e t e a s t h o s e g i v e n h e r e . 

The p r o b l e m i s to e n u m e r a t e a s u b s e t B(n) of S(n) w h i c h c o n t a i n s 

n - o m i n o e s h a v i n g the p r o p e r t y t h a t t h e y c a n be t r a n s l a t e d in s u c h a w a y 

t h a t t h e y a r e e n t i r e l y in the f i r s t and s e c o n d q u a d r a n t s w i t h e x a c t l y 

one s t r i p in the f i r s t r o w w i t h i t s i n i t i a l s q u a r e a t t he o r i g i n a n d e a c h 

r o w a f t e r t h e f i r s t h a s no m o r e t h a n one s t r i p in i t . Such n - o m i n o e s 

m a y b e v i s u a l i z e d a s s i d e e l e v a t i o n s of b o a r d p i l e s c o n s i s t i n g of b o a r d s 

of v a r i o u s l e n g t h s w h i c h g e n e r a l l y h a v e not b e e n s t a c k e d c a r e f u l l y , 

s e e F i g u r e 1. 

M o s e r n o t e d t ha t if b(n) d e n o t e s the n u m b e r of e l e m e n t s in B(n) , 

t h e n 

(1) b(n) = X (a 1 + a 2 - l ) ( a 2 + a 3 - 1) . . . ( a . ^ + a. - 1) 

w h e r e the s u m m a t i o n e x t e n d s o v e r a l l c o m p o s i t i o n s a, + a ? . 0 . + a. = n 
of n . The r e l a t i o n in (1) c a n be e s t a b l i s h e d by the fo l lowing c o m b i -
n a t o r i a l a r g u m e n t . F o r e a c h c o m p o s i t i o n a , + a~ + , . . + a. of n 

° 1 Z I 
t h e r e i s a s u b s e t of B(n) c o n s i s t i n g of n - o m i n o e s w h i c h h a v e a s t r i p 
of a s q u a r e s in t he t r o w (t = 1, 2, . . . , i ) ; t he n u m b e r of n -
o m i n o e s in e a c h of t h e s e s u b s e t s i s 1 if i = 1 w h i c h c o r r e s p o n d s to 

t he v a l u e of t h e e m p t y p r o d u c t in t he s u m (in t h i s t h e r e i s a s t r i p n 

u n i t s long in t he f i r s t row) and (a , + a~ - 1) ( a ? + a~ - 1) . . . (a . , + 
+ a . - 1) if i > 2„ T h i s fo l lows s i n c e t h e r e a r e e x a c t l y (a^ , + a , - 1) l ., J t - 1 t 
w a y s to j o i n the s t r i p of a s q u a r e s in t he t r o w to the s t r i p of 

a , s q u a r e s in t he r o w be low and the t o t a l n u m b e r of w a y s to c o n n e c t 

up the s t r i p s to f o r m a n n - o m i n o wou ld be t h e p r o d u c t of a l l of t h e s e 

a l t e r n a t i v e s , , T h e s u b s e t s c o r r e s p o n d i n g to t he c o m p o s i t i o n s of n a r e 
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exhaustive and disjoint in B(n), so that b(n) is the sum of the number 
of e lements in each subsets which is (1). 

The re la t ion for b(n) given by (1) does not furnish a ve ry handy 
device for computing b(n), but as Eden has shown it is helpful in e s t i -
mat ing b(n). Rather than a t tempt to sum (1) by pure ly a lgebra ic 
manipula t ions , we re t a in the geomet r ic in te rpre ta t ion of the problem 
so that combinator ia l a rguments can be m o r e eas i ly applied toward 
finding a r e c u r s i o n re la t ion for b(n)Q 

To find a r e c u r s i o n re la t ion for b(n) we define subsets B (n) 
(r = 1, 2, . . . , n) of B(n) which contain n-ominoes with a s t r ip of 
exactly r squares in the f i r s t row and let b (n) denote the number 
of e lements in B (n). It is obvious that the subsets B (n) (r = 1, 2, 
. . . , n) a r e exhaustive and disjoint in B(n) s o t h a t w e have immedia te ly 

n 
(2) b(n) - X br(n) . 

r = l 

Bv definition of B (n), b (n) = 1. Consider the e lements of 
J n n B (n) with r < n; each e lement of B (n) cons is t s of a s t r ip of r r r 

squa res in the f i r s t row with some element of B(n-r) located in the 
rows above the f i r s t . The si tuation can be appra i sed m o r e concisely 
when one cons iders the number of ways an e lement of the subset B.(n-r) 
of B(n-r) can be at tached to the s t r ip of r squa res in the f i r s t row 
so that the n-ominoes formed will be an e lement of B (n). Clear ly 
this can be done in r + i - 1 ways, so that exactly (r + i - 1) b. (n-r ) 
of the e lements of B (n) have an element of B.(n-r) connected to the 

r i 
s t r ip of r squa res in the f i r s t row. Since the subsets B-(n-r) 
(i = 1, 2, . . . , n - r ) of B(n-r) a r e exhaust ive, disjoint subse ts , it 
follows that 

n- r 
(3) b (n) = 1 (r + i - 1) b . (n- r ) for r < n . 

i=l 

It wil l be seen p resen t ly that the re la t ions in (2) and (3) a r e 
enough to find the des i r ed r e c u r s i o n re la t ion for b(n). Before this 
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r e su l t can be given, we have to prove a few l e m m a s . 

Lemma 1: If n > 1, b (n) - b T(n-1) = b(n-r) 0 

r* r - 1 
Proof: Using (3) it is seen that 

n - r n - r 
br(n) - b r _ x ( n - l ) = 2 ( r+ i - l )b . (n - r ) - 2 ( r+i -2)b . (n-r ) 

i=l i=l 

n - r 
= 2 b . (n-r ) , 

i=l 

but according to (2), the las t exp res s ion is p r e c i s e l y b(n-r ) , so the 
proof is finishedo 

Lemma 2: If n > 1, b(n) = 2 b(n- l ) + b (n) - b ^ n - 1 ) . 

Proof: Using re la t ions for b(n) and b(n- l ) given by (2), it is seen 
that 

n n-1 
(5) b(n) - b (n- l ) = 2 b (n) - 2 b . (n- l ) 

i=l i=l. 

n-1 
= bx(n) + 2 jb.(n) - b . ^ n - l ) ! ; 

i=2 

but according to Lemma 1, b(n-i) can be subst i tuted for b.(n) - b. (n-1) 
i n the las t m e m b e r of (5) so that making this subst i tut ion and t r a n s -
posing -b (n - l ) from the f i r s t to the las t m e m b e r gives 

n-1 
(6) b(n) = bx(n) + 2 b(n-i) . 

i=l 

Now using re la t ions given by (6) for b(n) and b(n- l ) we have 

n-1 n-2 
(7) b(n) - b(n- l ) = b ^ n ) + 2 b(n-i) - b ^ n - 1 ) - 2 b ( n - l - i ) 

i=l i=l 
= b ^ n ) - b , ( n - l ) + b(n- l ) ; 
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the des i r ed r e su l t is obtained by adding b(n- l ) to the f i rs t and last 
m e m b e r s of (7). 

Lemma 3: t^ (n) = 4 b ^ n - 1 ) - 4 b ^ n - 2 ) + b ^ n - 3 ) + 2 b(n-3). 

Proof: Taking r = 1 in (3) gives an express ion for b, (n); namely, 

n-1 
(8) bx(n) = X i b . ( n - l ) . 

i=l 

Using re la t ions for b, (n) and b, (n-1) given by (8) and sub-
stituting b(n-2-i) for b . + , ( n -1 ) - b.(n-2) and b(n- l ) for 

n-1 
2 b . (n- l ) 
i=l 

when they occur , it is seen that 

n-1 n-2 
(9) bx(n) - b ^ n - 1 ) = 2 i b . (n - l ) - 2 i b.(n-2) 

i=l i=l 

n-1 n-2 n-2 
= 2 b (n-1) + 1 i b . + 1 ( n - l ) - 2 i b.(n-2) 

i=l i=l i=l 

n-2 
= b(n- l ) + 2 i ) b . + 1 ( n - l ) - b .(n-2)j 

i=l 

n-2 
= b(n- l ) + 2 i b(n-2-i) . 

i=l 
Adding b, (n-1) to each m e m b e r of the equality and dropping the 

las t t e r m in the sum in the r ight m e m b e r of (9) (since b(0) - 0) a new 
re la t ion for b, (n) is obtained: 

n -3 
(10) b ^ n ) = b ^ n - 1 ) + b(n- l ) + 2 (n-2-i) b(i) . 

i=l. 
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This t ime using express ions for b, (n) and b , ( n - l ) givenby(lO) 
and again wri t ing a re la t ion for b, (n) - b (n-1), one obtains after a 
few a lgebra ic manipulat ions 

n-1 
(11) b ^ n ) = 2^(11-1) - b (n-2) - 2b(n-2) + 1 b(i) . 

i=l 

Repeating the same p rocedure as before only this t ime using ex-
p r e s s i o n s for b, (n) and b ^ n - l ) given by (11) yields 

(12) bx(n) = Sb^n-1 ) - 3bx(n-2) + ̂  (n-3) + b(n-1) - 2b(n-2) + 2b(n-3); 

but by Lemma 2, b(n- l ) - 2b(n-2) = b , ( n - l ) - b, (n-2) so that subs t i -
tuting the la t te r quantity for the fo rmer in (1 2) gives the des i r ed r e su l t . 

Theorem 1: b(l) = 1, b(2) = 2, b(3) = 6, b(4) = 19, and 
b(n) = 5b(n- l ) - 7b(n-2) + 4b(n-3) for n > 4. 

Proof: The values of b(i) (i = 1,.2, 3, 4) can be computed d i rec t ly 
from (1) or by taking b(l) = b, (1) = 1 the re la t ions in (2) and (3) can 
be used together for the same purpose . Lemmas 2 and 3 provide the 
l inear difference equations involving b, (n) and b(n) which can be 
used to find 

(13) b(n) = 5b(n- l ) - 7b(n-2) + 4b(n-3) , 

(14) bx(n) = 6b (n-1) - 12b (n-2) + l l b (n -3 ) - 4b(n-4), 

which completes the proof. 
The auxi l ia ry equation for (13) has one r ea l root g r e a t e r than 3„ 2 

so that for n sufficiently large 

(15) b(n) > ( 3 . 2 ) n . 

We conclude from e a r l i e r r e m a r k s that B(n) contains at least 
b(n)/8 incongruent n -ominoes , so that we can a l so rep lace b(n) in 
(15) with p(n). 

Having disposed of the m o r e difficult p roblem f i rs t , we now turn 
at tent ion to solving an e a s i e r and re la ted problem which was posed and 
solved by Mose r . 
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Let C(n) be the subset of B(n) which contains all n -ominoes 
having the p rope r ty that the init ial square of the s t r ip in the k row 

st is no fur ther to the left than the ini t ial square of the s t r ip in the (k-1) 
row. Recal l from the definition of B(n) that the ini t ial square of the 
s t r ip in the f i r s t row is always located at the origin. Using a combi-
na tor ia l a rgument s imi l a r to the one provided for the proof of (1), it is 
easy to prove 

(16) c(n) = . 2 a. a 2 . . . a. ^ 
a, +a~+. ... +a.=n 1 Z i 

where c(n) denotes the number of e lements in C(n). Applying the 
methods he gave in [8] , Moser was able to show from (16): 

st Theorem 2: c(n) is equal to the (2n-l) Fibonacci number . 

We will give an a l t e rna te proof using the same idea used in the 
proof of Theorem 1. Let C.(n) be the subset of C(n) which contains 
al l n -ominoes having s t r ips of exactly i squares in the f i rs t row. 
Clear ly the subsets C.(n) (i = 1, 2, . „ . , n) a r e exhaustive and d i s -
joint in C(n) so that lett ing c.(n) denote the number of e lements in 
C.(n) we have 

i 

n 
(17) c(n) = 2 c.(n) . 

i=l 

Next, it is easy to see that c (n) = 1, and for i < n, c.(n) = i c(n-i) 
since each element.of C(n-i) can be joined exactly i ways to the s t r ip 
of i squa res in the f i r s t row so as to form an e lement of C.(n); the 
n -ominoes thus formed obviously compr i se all the e lements of C.(n). 
Substituting the express ions just found for c.(n) into (17) we obtain 

n-1 
(18) c(n) = 1 + 2 i c(n-i) . 

i=l 

Using express ions for c(n) and c (n- l ) given by (1 8) we can com-
bine the sums in c(n) - c (n- l ) to find 
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n-1 
c(n) - c (n - l ) = £ c(i) , 

i=l 

or 

n-1 
c(n) = c (n - l ) + £' c(i) . 

i=l 

Now using express ions for c(n) and c (n- l ) given by (19) we can 
combine the sums in c(n) - c (n - l ) and deduce 

(20) c(n) = 3 c (n - l ) - c(n-2) . 

It is easy to prove that the Fibonacci numbers with odd indices 
satisfy the r e c u r r e n c e r e l a t i on in (20). Also, using (16) we find c(l) = f, 
and c(2) = f~ (f. denotes the i Fibonacci number as usual) so that 
the sequences {c.} and {f?. ,} mus t be ident ical . Edi tor ia l Note: 
See H-50 Dec. 1964 and note notational di f ferences . 

N-OMINOES ENCLOSED IN RECTANGLES 

R0 C. Read [9] has t r ea t ed the problem of enumera t ing the n-
ominoes which "fit" into a p x q rec tang le . An n-omino is said to fit 
in a p x q rec tangle if it is the sma l l e s t rec tangle in which the n-omino 
can be drawn with the s ides of its squa res pa ra l l e l to the s ides of the 
rec tang le . Read ' s methods give exact counts of the n-ominoes in the 
se ts considered; however, it is poss ib le to obtain lower bounds for these 
number s with less effort using s imi l a r i deas . To i l lus t r a t e we will 
consider the problem of es t imat ing from below the number s?(n) of 
n -ominoes which fit in a 2 x k rec tangle ; we call this set of n -ominoes 
S?(n). Two e lements a r e dis t inct if they a r e incongruent, so S~(n) is 
a subset of P(n). 

F i r s t , we observe that each e lement of S?(n) can be located en-
t i r e ly in the f i rs t quadrant in rows 1 and 2 with a square Located at the 
or igin. If each e lement of S?(n) is s i tuated in the way jus t desc r ibed 
in e v e r y w a y poss ib le , a new set U(n) is obtained where two e lements 
a r e dist inct if one does not exactly cover the other0 Clear ly , u(n), the 
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number of e lements in U(n), is less than or equal to 4s ? (n ) . Now 
U(n) can be divided into two se ts U"(n) and U'(n) consist ing r e s p e c -
tively of n -ominoes having and not having a square in the second row 
at tached to the square at the or igin. Let the number of e lements in 
U'(n) and U"(n) be u'(n) and u"(n) respec t ive ly . Now it is easy to 
see that 

(21) uf{n) = u ' ( n - l ) + u" (n - l ) 

since eve ry e lement of U"(n-1) and U ' (n- l ) can be t r ans la ted a unit 
to the right of the or igin and a square located at the origin to give an 
e lement of U'(n) and every e lement is obviously obtained in this fash-
ion. It is a lso easy to prove 

(22) u"(n) = 2u'(n-2) + u"(n-2) 

since every e lement of U"(n-2) and every e lement of U'(n~2) and its 
hor izonta l ref lect ion can be t r ans l a t ed a unit to the right of the origin 
and two squa re s added (one at the origin, the other at tached above it) 
to form eve ry e lement of U"(n). 

Using (21) and (22) we can find 

(23) u ' (n ) = u ' ( n - l ) + u ' ( n - 2 ) + u ' ( n - 3 ) 

a n d 

(24) uM(n) = u " ( n - l ) + u"(n-2) + uM(n-3), 

so that it becomes evident from u(n) = u'(n) + u"(n) that 

(25) u(n) = u (n - l ) + u(n-2) + u(n-3) . 

Since u(n)/4 < s?(n) s (25) provides a re la t ion for es t imat ing 
s ? (n ) . The same p rocedure can be used for es t imat ing the number of 
e lements in S,(n) consis t ing of n -ominoes which fit in k x q r ec t ang le s . 

N-OMINO CONFIGURATIONS 

P r o b l e m s involving n-omino configurations have enjoyed a g rea t 
popular i ty among ma themat i ca l r e c r ea t i on i s t s [4] , [6] . We plan to 
devote a smal l amount of space to giving an exposit ion of p rob lems 
which may be of i n t e r e s t to the mathemat ic ian . Genera l ly these p rob lems 
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have the following form: given a region of a r e a A and a set of n-
ominoes having a combined a r e a a lso A; can one cover the region with 
the s e t ? 

We say a set exact ly covers a region when the re is no over lap 
and no pa r t of the region is left uncovered. It would be in te res t ing to 
know n e c e s s a r y conditions that an n-omino be such that an unl imited 
number of copies could be used to exactly cover the plane0 A re la ted 
problem is to de te rmine n e c e s s a r y conditions that some number of 
copies of a given n-omino could be used to exactly cover a r ec tang le . 
Thus, some eas i ly proved n e c e s s a r y conditions a r e given by: 

(i) if an n-omino has two lines of s y m m e t r y and a set of these n-
ominoes exactly covers a rec tangle , then the n-omino is i tself a 
rec tang le . 

(ii) if an n-omino fits in a p x q rectangle and covers diagonally op-
posi te c o r n e r s of the rec tangle , and a set of these n -ominoes can 
be used to exactly cover a rec tangle , then the n-omino is i tself 
a rec tang le . 
A rec tangle exactly covered with a set of congruent n -ominoes is 

min imal when no rec tangle of sma l l e r a r e a can be exact ly covered with 
a set of the same n-ominoes containing fewer e l e m e n t s . It is easy to 
prove that the re is an unl imited number of min ima l rec tang les involving 
e i ther two or four n -ominoes . F igu res 2, 3, 4 and 5 show ins tances of 
min ima l rec tang les involving m o r e than four n -ominoes . Are the re 
infinitely many cases of min ima l rec tang les which involve m o r e than 
four n -ominoes (no two cases involving s imi l a r n-ominoes) ? Are the re 
min ima l rec tangles involving an odd number of n -ominoes which a r e not 
themse lves r e c t a n g l e s ? 

Note that the configurations depicted in F igures 1, 2, 3 and 4 a r e 
s y m m e t r i c with r e spec t to the cen te r s of the r ec t ang le s . Can this a l -
ways be done in min imal r e c t a n g l e s ? 

GENERALIZATIONS OF N-OMINOES 

In [5] , Golomb suggests that one could t r y to de te rmine or e s t i -
mate the number of dis t inct ways n equi la te ra l t r i ang les or n regu la r 
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hexagons could be simply connected edge on edge. Using 1, 2, 3, 4, 

5 or 6 hexagons 1, 1, 3, 7, 22 or 83 combinations respectively result; 

so far no upper or lower bounds for the terms of this sequence have 

been given. 

There is no reason why regular k-gons could not be used for 

cells in such combinatorial problems; overlapping of cells could be 

permitted so long as no cell exactly covered another. Thus, where 

at most four squares or three hexagons might have a vertex in com-

mon, at most ten pentagons might have a vertex in common. The num-

ber of distinct ways to join two regular k-gons is one; the number of 

ways to join three regular k-gons is the greatest integer in k/2. Per-

haps it would not be difficult to determine in how many ways four or 

five regular k-gons could be joined together edge on edge so that dis-

tinct simply connected figures are formed. 

Still another generalization of n-ominoes which seems not to 

have been considered is joining squares together edge on edge in three 

or more dimensions. The number of ways of joining k cubes face on 

face in three dimensions (including mirror images of some pieces) is 

1, 1, 2, 8, 29j and 166 for k = 1, 2, 3, 4, 5, and 6 respectively; no 

bounds have been given for the terms of this sequence nor has much 

been done in a serious vein connected with the packing of space with 

these three dimensional analogues of polyominoesD 
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