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INTRODUCTORY REMARKS
An n-omino is a plane figure composed of n connected unit

squares joined edge on edge. In the early nineteen hundreds, Henry

Dudeney, the famous British puzzle expert, and the Fairy Chess Review

popularized problems involving n-ominoes which they represented as
figures cutfrom checkerboards. Solomon Golomb seems to have been
the first mathematician to treat the subject seriously when as a grad-
uate student at Harvard in 1954, he published ''Checkerboards and

Polyominoes' in the American Mathematical Monthly. Since 1954,

several articles have appeared (see References); in particular, R. C.
Read [9] and Murray Eden [2] have discussed the problem of finding or
estimating the number p(n) of n-ominoes for a given n. From their

results it is now known that for large n

n n
¢ < p(n) < c,

where ¢ and c, are certain positive constants greater thanl. In
the first part of this paper we enumerate a subset of n-ominoes and
provide an improved lower bound for p(n); later we discuss other
problems of this sort and conclude witha brief exposition of problems

dealing with configurations of n-ominoes.

MOSER'S BOARD PILE PROBLEM

In the following it will be convenient to have certain conventions.
We saythe regionbetween y = n-1 and y =n is the nth row and call
a rectangle of width one a strip, The firstsquare on the left in a strip
located in a row is called the initial square of the strip; an n-omino is
located in the plane when some square in the n-omino exactly covers
a square in the plane lattice. The setof allincongruent n-ominoes will
be denoted by P(n) and for convenience we think of the elements of
P(n) located in arbitrary regions of the plane. Ignoring changes in
position due to translations, each element of P(n) has eight or less
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positions with respect to 900 rotations about the origin and reflections
along the x or y axes; taking two n-ominoes to be distinct if one cannot
be translated to cover the other, we find a new set S(n) from P(n)
by including rotations and reflections of n-ominoes in P(n) in S(n).

The problem which is now to be discussed was probably first
posed by Leo Moser in private correspondence with the present author;
later he posed it in a different form at the 1963 Number Theory Con-
ference held at the University of Colorado. Eden [2] also discusses
the problem, but his results are not as complete as those given here.
The problem is to enumerate a subset B(n) of S(n) which contains
n-ominoes having the propertythat theycan be translated in such a way
that they are entirely in the first and second quadrants with exactly
one strip in the first row with its initial square at the origin and each
row after the first has no more than one strip in it. Such n-ominoes
may be visualizedas side elevations of board piles consisting of boards
of various lengths which generally have not been stacked carefully,
see Figure 1.

Moser noted thatif b(n) denotesthe number of elements in B(n),

then

(1) b(n) = I (a +a2 - 1)(a2 +a

1 -1)... (a

+ai—l)

3 i-1

where the summation extends over all compositions a, + a

1 R
of n. The relation in (1) can be established by the following combi-

+a.=n
i

natorial argument. For each composition ay + a, oot a, of n
there is a subset of B(n) consisting of n-ominoes which have a strip
of a, squares in the tth row (t=1, 2, ..., i); the number of n-

ominoes in each of these subsets is 1 if i =1 which corresponds to
the value of the empty product in the sum (in this there is a strip n
3" 1) ... (ai_1 +

+ a;- 1) if i 2 2. Thisfollows since there are exactly (at 1 + a, - 1)
th -

squares in the t row to the strip of

units long in the first row) and (a1 + a, - 1) (a2 + a

ways to join the strip of ay

a,_, squares in the row below and the total number of ways to connect

up the strips to form an n-omino would be the product of all of these

alternatives. The subsets correspondingto the compositions of n are
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exhaustive and disjointin B(n), so that b(n) is the sum of the number
of elements in each subset, which is (1).

The relation for b(n) given by (1) does not furnish a very handy
device for computing b(n), but as Eden has shown it is helpful in esti-
mating b(n)., Rather than attempt to sum (1) by purely algebraic
manipulations, we retain the geometric interpretation of the problem
so that combinatorial arguments can be more easily applied toward
finding a recursion relation for b(n).

To find a recursion relation for b(n) we define subsets Br(n)
(r=1, 2, ..., n) of B(n) which contain n-ominoes with a strip of
exactly r squares in the first row and let br(n) denote the number
of elements in Br(n). It is obvious that the subsets Br(n) (r =1, 2,

..., n) are exhaustive anddisjointin B(n) sothatwe have immediately

n
(2) b(n) = % b (n) .

T
r=1

By definition of Bn(n), bn(n) =1, Consider the elements of
Br(n) with r < n; each element of Br(n) consists of a strip of r
squares in the first row with some element of B(n-r) located in the
rows above the first, The situation can be appraised more concisely
when one considers the number of ways anelement of the subset Bi(n-r)
of B(n-r) can be attached to the strip of r squares in the first row
so that the n-ominoes formed will be an element of Br(n), Clearly
this can be done in r +1i - 1 ways, so that exactly (r +1i- 1) bi (n-r)
of the elements of Br(n) have an element of Bi(n-r) connected to the
strip of r squares in the first row. Since the subsets Bi(n-r)
(i=1, 2, ..., n-r) of B(n-r) are exhaustive, disjoint subsets, it

follows that

n-r
(3) br(n) = 3 (r+i-1) bi(n—r) for r < n
i=1
It will be seen presently that the relations in (2) and (3) are

enough to find the desired recursion relation for b(n)., Before this
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result can be given, we have to prove a few lemmas.

Lemma 1: If n>1, br(n) - br (n-1) = b{n-r).

-1
Proof: Using (3) it is seen that
n-r n-r
br(n) - br_l(n—l) = 3 (r+i-1)bi(n—r) - 3 (r+i—2)bi(n—r)
i=1 i=1
n-r
= 2 bl(n—r) H
i=1

but according to {2), the last expression is precisely b(n-r), so the

proof is finished.

Lemma 2: If n>1, b(n)=2 b(n-1) + bl(n) - bl(n-l).

Proof: Using relations for b(n) and b(n-1) given by (2), it is seen
that
n n-1
(5) b(n) - b(n-1) = 3 bin) - 2 bi(n-1)
i=1 i=1
n-1
= b+ 5 Ib(n)- bi_l(n-1)§ ;
i=2

but accordingto Lemma 1, b{n-i) can be substituted for b.l(n) - bi_l(n—l)
in the last member of (5) so that making this substitution and trans-

posing -b{n-1) from the first to the last member gives
n-1
(6) b(n) = bl(n) + 3 bn-i) .

i=1
Now using relations given by (6) for b(n) and b(n-1) we have
n-1 n-2

bl(n) + 3 b(n—i)—bl(n—l) - 3 b(n-1-i)

i=1 i=1
bl(n,) - bl(n—l) + b{n-1);

(7) b(n) - b(n-1)

il

it
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the desired result is obtained by adding b(n-1) to the first and last

members of (7).

Lemma 3: b1 (n) = 4 bl (n-1) - 4 b1 (n-2) + b1 (n-3) + 2 b(n-3).

Proof: Taking r =1 1in (3) gives an expression for bl(n); namely,
n-1

(8) b, (n) = P b, (n-1)
i=1

Using relations for bl(n) and bl(n—l) given by (8) and sub-

stituting b(n-2-i) for bi+1(n—1) - bi(n—Z) and b(n-1) for

n-1
s bi(n-1)

i=1

when they occur, it is seen that

(9) by(n) - by(n-1)= £ ib(n-1)- 3 ib(n-2)

= 3 bfn-1)+ T ib, (n-1) - I ib,(n-2)
i=1 i=1 i=1
n-2
= b(n-1)+ ¥ i gb

i=1

i (-1 - bi(n"2)§
n-2
= b(n-1) + ¥ 1 b(n-2-i)
i=1
Adding bl(n—l) to each member of the equality and dropping the
last term in the sum in the right member of (9) (since b(0) = 0) a new

relation for bl(n) is obtained:

n-3
(10) bl(n) = bl(n—1)+b(n-1) + 3 (n-2-1) b(i) .
i=1
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This time using expressions for bl(n) and bl(n-l) given by (10)

and again writing a relation for bl(n) - b,(n-1), one obtains after a

1
few algebraic manipulations

n-1
(11) bl(n) = Zbl(n—l) - bl(n—Z) - 2b(n-2) + X b(i) .

i=1

Repeating the same procedure as before only this time using ex-

pressions for bl(n) and bl(n—l) given by (11) yields

(12) by(n) = 3b, (n-1) - 3b; (n-2) + by (n-3) +b(n-1) - 2b(n-2) +2b(n-3);

but by Lemma 2, b(n-1) - 2b(n-2) = b, (n-1) - bl(n—Z) so that substi-

(
1
tuting the latter quantity for the former in (12) gives the desired result.
Theorem 1: b(l) = 1, b(2) = 2, b(3) = 6, b(4) = 19, and

b(n) = 5b(n-1) - 7b(n-2) + 4b(n-3) for n > 4.
Proof: The values of b(i) (i=1,.2, 3, 4) can be computed directly
from (1) or by taking b(l) = bl(l) =1 the relations in (2) and (3) can

be used together for the same purpose. Lemmas 2 and 3 provide the
linear difference equations involving bl(n) and b(n) which can be

used to find
(13) b(n) = 5b(n-1) - 7b(n-2) + 4b(n-3) ,

(14) by(n) = 6b (n-1) - 12b)(n-2) + 11b(n-3) - 4b(n-4),

1( 1(
which completes the proof.
The auxiliary equation for (13) has one real root greater than 3.2

so that for n sufficiently large

(15) b(n) > (3.2)"

We conclude from earlier remarks that B(n) contains at least
b(n)/8 incongruent n-ominoes, so that we can also replace b(n) in
(15) with p(n).

Having disposed of the more difficult problem first, we now turn
attentionto solving an easier and related problem which was posed and

solved by Moser.
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Let C(n) be the subset of B(n) which contains all n-ominoes
having the property that the initial square of the strip in the kth row
is no further to the left thanthe initial square of the strip in the (k-l)St
row. Recall from the definition of B(n) that the initial square of the
strip in the first row is always located at the origin. Using a combi-
natorial argument similar tothe one provided for the proof of (1), it is

easy to prove

(16) c(n) = z a, a

a1+a2+. . +ai=n

where c(n) denotes the number of elements in C(n). Applying the
methods he gave in [8] , Moser was able to show from (16):

Theorem 2: c(n) is equal to the (Zn-l)St Fibonacci number,

We will give an alternate proof using the same idea used in the
proof of Theorem 1. Let Ci(n) be the subset of C(n) which contains
all n-ominoes having strips of exactly i squares in the first row.
Clearly the subsets Ci(n) i=1, 2, ..., n) are exhaustive and dis-
joint in- C(n) so that letting ci(n) denote the number of elements in

Ci(n) we have
n
(17) cn) = 3 cn) .

Next, itis easyto see that cn(n) =1, andfor i < mn, ci(n) =1 c(n-1i)
since eachelement of C(n-i) canbe joined exactly i ways to the strip
of i squares in the first row so as to form an element of Ci(n); the
n-ominoes thus formed obviously comprise all the elements of Ci(n).

Substituting the expressions just found for ci(n) into (17) we obtain

n-1
(18) cn) = 1+ % ic(n-1) .
i=1

Using expressions for c(n) and c(n-1) givenby(18)we cancom-

bine the sums in c(n) - c(n-1) to find
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n-1
c(n) - c(n-1) = 3 c(i) ,
i=1
or
n-1
c(n) = c(n-1) + I c(i)
i=1

Now using expressions for c(n) and c(n-1) givenby(19) we can

combine the sums in c(n) - c(n-1) and deduce
{20) c(n) = 3 c(n-1) - c(n-2).

It is easy to prove that the Fibonacci numbers with odd indices
satisfy the recurrence relationin (20). Also, using (16) we find c(l) = fl
and c¢(2) = £3 (fi denotes the ith Fibonacci number as usual) so that
the sequences {ci} and {fZi—l} must be identical. Editorial Note:

See H-50 Dec. 1964 and note notational differences.

N-OMINOES ENCLOSED IN RECTANGLES

R. C. Read [9] has treated the problem of enumerating the n-
ominoes which "fit" into a p x q rectangle. An n-omino is said to fit
ina px q rectangleif itis the smallestrectangle inwhich the n-omino
can be drawn with the sides of its squares parallel to the sides of the
rectangle. Read's methods give exact counts of the n-ominoes in the
sets considered; however, itis possible to obtain lower bounds for these
numbers with less effort using similar ideas. To illustrate we will
consider the problem of estimating from below the number sz(n) of
n-ominoes which fit in a 2 x k rectangle; we callthis set of n-ominoes
Sz(n). Two elements are distinct if they are incongruent, so Sz(n) is
a subset of P{(n).

First, we observe that each element of Sz(n) can be located en-
tirely in the first quadrant inrows 1 and 2 with a square located at the
origin. If each element of Sz(n) is situated in the way just described
in everyway possible, a new set U(n) is obtained where two elements

are distinct if one does notexactly cover the other. Clearly, u(n), the
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number of elements in U(n), is less than or equal to 452(1'1). Now
U(n) can bedivided intotwo sets U''(n) and U'(n) consistingrespec-
tively of n-ominoes having and not having a square in the second row
attached to the square at the origin. Let the number of elements in
U'(n) and U''(n) be u'(n) and u''(n) respectively, Now it is easy to

see that
(21) u'(n) = u'(n-1) +u"(h-1)

since every element of U'(n-1) and U'(n-1) can be translated a unit
to the right of the origin and a square located at the origin to give an
element of U'(n) andevery elementis obviously obtained in this fash-

ion. It is also easy to prove
(22) u''(n) = 2u'(n-2) + u''(n-2)

since everyelement of U''(n-2) andevery element of U'(n-2) and its
horizontal reflection can be translated a unit to the right of the origin
and two squares added (one at the origin, the other attached above it)
to form every element of U''(n).

Using (21) and (22) we can find

(23) u'(n) = u'(n-1) +u'(n-2) + u'(n-3)
and
(24) u'(n) = u''(n-1) + u"'(n-2) + u''(n-3),

so that it becomes evident from u(n) = u'(n) + u''(n) that
(25) u(n) = u(n-1) + u(n-2) + u(n-3) .

Since u(n)/4 & sz(n), (25) provides a relation for estimating
sz(n). The same procedure can be used for estimating the number of

elements in Sk(n) consisting of n-ominoes whichfitin kx q rectangles.

N-OMINO CONFIGURATIONS

Problems involving n-omino configurations have enjoyed a great
popularity among mathematical recreationists (4], [6]. We plan to
devote a small amount of space to giving an exposition of problems

whichmay be of interesttothe mathematician, Generallythese problems
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have the following form: given a region of area A and a set of n-
ominoes having a combinedarea also A; can one cover the region with
the set?

We say a set exactly covers a region when there is no overlap

and no part of the region is left uncovered. It would be interesting to
know necessary conditions that an n-omino be such that an unlimited
number of copies could be used to exactly cover the plane. A related
problem is to determine necessary conditions that some number of
copies of a given n-omino could be used to exactly cover a rectangle.

Thus, some easily proved necessary conditions are given by:

(1) if an n-omino has two lines of symmetry and a set of these n-
ominoes exactly covers a rectangle, then the n-omino is itself a
rectangle.

(ii) if an n-omino fitsin a p x q rectangle and covers diagonally op-
posite corners of the rectangle, and a set of these n-ominoes can
be used to exactly cover a rectangle, then the n-omino is itself
a rectangle,

A rectangle exactly coveredwith a setof congruent n-ominoes is
minimal when no rectangle of smaller area can be exactly covered with
a set of the same n-ominoes containing fewer elements. It is easy to
prove that there is anunlimited number of minimal rectangles involving
either two or four n-ominoes. Figures 2, 3, 4 and 5 show instances of
minimal rectangles involving more than four n-ominoes. Are there
infinitely many cases of minimal rectangles which involve more than
four n-ominoes (no two cases involving similar n-~-ominoes)? Are there
minimal rectangles involving an odd number of n-ominoes whichare not
themselves rectangles ?

Note that the configurations depicted in Figures 1, 2, 3 and 4 are
symmetric with respect tothe centers of the rectangles. Can this al-

ways be done in minimal rectangles ?

GENERALIZATIONS OF N-OMINOES

In [5] , Golomb suggests that one could try to determine or esti-

mate the number of distinctways n equilateraltrianglesor n regular
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hexagons could be simply connected edge on edge. Using 1, 2, 3, 4,
5 or 6 hexagons 1, 1, 3, 7, 22 or 83 combinations respectively result;
so far no upper or lower bounds for the terms of this sequence have
been given.

There is no reason why regular k-gons could not be used for
cells in such combinatorial problems; overlapping of cells could be
permitted so long as no cell exactly covered another. Thus, where
at most four squares or three hexagons might have a vertex in com-
mon, at most tenpentagons might havea vertex in common. The num-
ber of distinct ways to join two regular k-gons is one; the number of
ways to join three regular k-gons is the greatest integer in k/2. Per-
haps it would not be difficult to determine in how many ways four or
five regular k-gons could be joined together edge on edge so that dis-
tinct simply connected figures are formed.

Still another generalization of n-ominoes which seems not to
have been considered is joining squares together edge on edge in three
or more dimensions. The number of ways of joining k cubes face on
face in three dimensions (including mirror images of some pieces) is
1, 1, 2, 8, 29, and 166 for k=1, 2, 3, 4, 5, and 6 respectively; no
bounds have been given for the terms of this sequence nor has much
been done in a serious vein connected with the packing of space with

these three dimensional analogues of polyominoes.
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