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Solution by David Zeitlin, Minneapolis, Minnesota
Using mathematical induction, one may show that

n

F4n: 3 L4k-2’ n=1, 2, ...
k=1

If we apply the well-known arithmetic-geometric inequality to the un-

equal positive numbers LZ’ L6’ LIO’ e L4n-7’ we obtain for
n=2, 3, ...,
n
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which is the desired inequality.

Also solved by Douglas Lind and the proposer.
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CORRECTION Volume 3, Number 1
Page 26, line 10 from bottom of page
v \' +V =F,-F_=F, =8

7,37V7,4% Ve, 57 FgFg = Fg =
Page 27, lines 4 and 5

F2+F4+F6+. . +Fn = Fn+l -1 (n even)
F3+F5+F7+. . +Fn = Fn+l -1 (n odd)
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Page 40, Equation (81), the R.H.S. should have an additional term
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