ADVANCED PROBLEMS AND SOLUTIONS
Edited by VERNER E. HOGGATT, JR.

San Jose State College, San Jose, California

Send all communications concerning Advanced Problems and
Solutions to Verner E. Hoggatt, Jr., Mathematics Department, San
Jose State College, San Jose, California. This department especially
welcomes problems believed to be new or extending old results. Pro-
posers should submit solutions or other information that will assist
the editor. To facilitate their consideration, solutions should be sub-
mitted on separate signed sheets within two months after publication

of the problems.
H-59 Proposed by D.W. Robinson, Brigham Young University, Provo, Utah

Show that, if m > 2, then the period of the Fibonacci sequence
0, 1,1, 2, 3, ..., F, ... reduced modulo m is twice the least

n
positive integer n such that Fn = (—l)nFn_1 (mod m).

+1

H-60 Proposed by Vemer E. Hoggatt, Jr., San Jose State College, San Jose, California

Itis well knownthatif p, isthe leastinteger suchthat F = F
k k Kk n+pk n
mod 107, then p; = 60, p, = 300 and p, = 1.5x 10" for k23, If
Q(n, k) isthe kth digitofthe nth Fibonacci, thenfor fixed k, O(n, k)
is periodic, thatis Qe is the least integer such that Q(n+qk, k) = O(n, k)

mod 10. Find an explicit expression for SI

H-61 Proposed by P.F. Byrd, San Jose State College, San Jose, California

= < < k- =
Let fn,k 0 for 0 n S k-2, fk-—l,k 1 and
k
= f
fn,k s fn—j,k or nz2k
=1
Show that
f
%<fn,k <1§+21E for n21 .,
n+l, k
Hence f
lim lim nk _ 1
k —=>= n—=° f -2
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See E. P. Miles, '""Generalized Fibonacci Numbers and their Associated

Matrices, "' The American Mathematical Monthly, Vol. 67, No. 8.
H-62 Proposed by H.W. Gould, West Virginia University, Morgantown, West Va.

Find all polynomials f£(x) and g(x), of the form

f(x+1)

r
3 a.xJ, aj an integer

g(x)

i
™M
o

.

o
”'_n

bj an integer

such that

2 §x2f3(x+1) - (x+1)2g3(x)§ + 3§x2f2(x+1) - (x+1)2g2(x)f
+ 2(xH1) § xf(xH1) - (x+l)gx)} = 0
H-63 Proposed by Stephen Jerbic, San Jose State College, San Jose, California
Let

F

rnF -1 """ "m-ntl
F(m,0) =1 and F(m,n) = FmF F o<n<m

n n-1

be the Fibonomial coefficients, where Fn is the nth Fibonacci num-
ber. Show

2m-1 m-1
5. F(2m-1l,n) = 1 L. m 21
n=o izo

H-64 Proposed by Douglas Lind, University of Virginia, Charlottesville, Va.

Show

n
_ : jo
Fn+1 = I (1 - 21 cos o ,

=1

where Fn is the nth Fibonacci number.
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ALL THE SOLUTIONS
H-30 Proposed by . A.H. Hunter, Toronto, Ontario, Canada

Find allnon-zero integral solutions to the two Diophantine equa-

tions,
(a) x2+xy+x—y2:o
(b) xz—xy—x—y2=0

Solution by Jobn L. Broun, Jr., Pennsylvania State University, State College, Pa.

We first observe that (xo, yo) is a solution of (a), if and only
(-xo, yo) is a solution of (b). Thus we may limit our considerations
to just one of the equations, say (b).

Equation (b) has the form
XZ - (y+l)x - yZ = 0
which, considering y as a parameter, has solutions

(y+1) =, (y+1)2 + 4y2
2

For x to be an integer, it is clearly necessary and sufficient that
(y+1)2 + 4y2 be a perfect square, that is, there exists an integer 2z
such that

2
)

(y+1 +4y2 =z ,

or,

(y1)? + 2n? = 2

Let us look first for solutions with y > 0. Note that 2y/d and
(y+l)/d are relatively prime integers, where d 2 1 is the greatest
common divisor of 2y and y+l, so that, by the well-known theorem
on solutions of x2 + yz = zZ, there exist two relatively prime positive

integers r and s of different parity, with r > s, such that either

(= a(r?-s%)
(1) ,
| 2y = d(zrs)
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sy+1 = d{(2rs)
} 2y = d(rz—sz)

For case (l), it follows easily that d =1, while in case (2),
d = 2. Hence, solving case (1) is equivalent to finding relative prime

positive integers r and s of different parity satisfying

(3) ¥ s -s® =1

Now, in case (2), let

Then, recalling that d = 2 in case (2), we have

i
=

s y+1

(4)
)‘ 2y = 2r's' ,

which has formally the same appearance as case (1) and implies

Thus, since

solving case {2) is equivalent to finding odd positive integers r' and s'
satisfying (3).
In either case, we see that every solution of (b) with y > 0 is

generated by an appropriate solution of the diophantine equation:

(%) r2 - rs - 52 =1

Note that any solution (r, s) of (*) inpositive integershas r and
s relatively prime and r > s. Note that the case (r even, s even)
cannot occur as a solution of (*).

Now, if (r,s) is a solution of (*) with positive integers r and

s of different parity, then case(l)is indicated with y = rs and either



1965 ADVANCED PROBLEMS AND SOLUTIONS 119

2 2

r or x=-s . Thus, we obtain two solutions (x, y) of (b), namely
r , rs) and (—sz, rs).

If (r', s') is asolution of (*) with odd positive integers r' and

s', thenwehave case (2) and vy = r's' withboth x = r'z and x = -s'

again giving two solutions of (b).

Thus, every positive solution (r,s) of (*) leads to two solutions
of equation (b) having positive values for vy, namely (rz, rs) and
(—sz, rs).

It remains to consider solutions of (b) having vy < O.

If y<O0, let y=- 'yl; then, from (b),

2
x

_ (-ly] +1>i2/(|v! - 1%t ey

so that (ly! - 1)‘2 + 4Iy,2 must be a perfect square, or equivalently,

there exists an integer 2z such that

2 ‘ 2 2
(yl-n7+@lyh® = -
As before, letting d = the greatest common divisor of ‘y[ -1
and Zly‘, we deduce the existence of two relatively prime positive

integers r and s of different parity, with r > s, such that either

(1) lyl-1 = a?-s%)
2|y] = d(zrs)

or

(2)% lyl-1 = a(zrs)
2ly| = a@?-s?)

Clearly, d =1 incase (1)¥ and d = 2 forcase (2)*. Incase (1)%,

we find that r and s must satisfy

(:{::{:) I’Z—S -rs = -1 )

while in case (2)%, the substitution r' = r+s, s'=r-s yields (using

d =1 for case (1)* and d =2 for case (2)%)

It
-
'
w

lyl-1 ’

2yl

1l
Y
)
w0
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which shows that (r', s') is also a solution in positive integers of (¥%),

Note that any solution (r,s) of (*%) in positive integers has r
and s relativelyprimeand r > s ifwe exclude the solution r = s = 1.
Alsothe case(r even, s even)cannotoccurasa solution of (*%*), Thus,
every solution of (*#*)in positive integers either has both terms odd or
r even and s odd. The latter case gives a solution of (b) with 'y' =rs

and both x = —r'Z and x = SZ, sothatthetwo generated solutions of (b)
2 2
are (-r , -rs) and (s, -rs).

Similarly, if (r', s') is a solution of (**) with r' and s' both

| 2

odd and r' > s', then ’yi =r's' with x = —r'2 and x = s'

Thus, every solution of (*%)in positive integers (r, s) (including
(1,1)) yields two solutions of (b) with negative y, namely (—rz, -rs)
and (SZ, -rs).

To find the actual solutions, we recall that every solution of
rz -rs - s2 =1 1in positiveintegers r,s hasthe form r = F2k+1 and
s = F for some integer k 2 1. (See solution of H-31). The corres-

2 2

2kl Fok Fopar) 2nd (CFop Fop For )

2k
ponding solutions of (b) are (F

for k=1, 2, 3,

The other equation rZ -rs —s2 = -1 may be transformed to

r' —r's'-—s'z =1 by the change of variable, r' = r+s, s' = r; it follows

that every solution of 1'2—rs - SZ = -1 in positive integers (r,s) has

= = 1 > -
the form r FZk’ s FZk—l for some integer k _21. The corres
ponding solutions of (b)are (-F and (FZk-l’ -F

for k=1, 2, 3,

2k " FoF k-1 2k F2r-1)

.. . 2
Summarizing, the set of solutions, (F2k+1’ FZk F2k+1)’

2 2 2
CFoe For Forrd CFoe ~For Forard Fap ~Fop Foroy)
k=1, 2, 3, ..., constitute all the non-zero integral solutions of

for

Xz—xy-x—yz = 0, and the set

2 2 2
CForr Fox Foarn ) Fare For Foxn)h Fope Fop Fop )
(-F2 “F., F, .) for k=1, 2, 3,

2k-17 2k " 2k-1
constitute all non-zero integral solutions of x2 + Xy t+x -y

AN OLD PROBLEM
H-41 Proposed by Robert A. Laird, New Orleans, La.

2 -0,

Find rational integers, x, and positive integers, m, so that
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2
N = x - m and M:x2+rn

are rational squares,
Solution by Joseph Arkin, Spring Valley, New York

Professor Oystein Ore, Sterling Professor of Mathematics at

Yale University, in his book, Number Theory and Its History, 1st ed.,

1948, gives the complete solution to this problem on pages188-193.

Also solved by Maxey Brooke, Sweeny, Texas
COMMENTS ON THE HISTORICAL CASE

Solved by Robert A. Laird

A solution to the historical problem submitted to Fibonacci
(Leonardo of Pisa) by John of Palermo, animperialnotary of Emperor
Frederick I, about 1220 A.D. (see page 124, Cajori's ''History of
Mathematics' for reference). The problem: Find a number x, such
that XZ +5 and x2 - 5 are each square numbers. In other words,
find the square which increased or decreased by 5, remains a square.
Leonardo solved the problem bya method (not known to me) of building
squares by the summation of odd numbers.

Solution to this problem was published in the ''Mathematics
Teacher'! in December 1952,

Ioffer it here for your interest and pleasure. Let

x = side of the desired square
x +b = side of a larger square
x - a = side of a smaller square

a and b are positive, rational numbers

(1) (x +b)° = x° +5
(2) N
Solving (1) and (2)

g .- 2

(4) « = 5 - b2
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Equating (3) and (4)

5+az_5-bZ

2a B 2b

Solving for b in terms of a, we have

(5) b o= —(5+az) + \/a4+30a2+25

- 2a

In order for b to be a rational number, the radical must clear. So
find value of a that will do this.
We can find a by trial substitution or by factoring. Let's take

factoring:

a4 + 3Oa2 + 25
a4 + Z()a2 + 4a2 + 25
—— e,
a4 + 26a2 + 169 + 4aZ - 144

@% +13)% + 4(a” - 36)

If aZ = 36 or a =6, the radical will clear. For immediate result,

substitute a = 6 in (3)

5+a2 5 + 36 41

x = 2a = 12 = Tz' Q. E.D.

Generally, find the square whichif increased or decreased by m will
remain a square (m = positive integer). Strangely, when m =6, a

solution can be found, but not for m =1, or 2, or 3, or 4.

FROM BEST SET OF K TO BEST SET OF K+17?

H-42 Proposed by |.D.E. Konhauser, State College, Pa.

A set of nine integers having the property that no two pairs have
the same sum is the set consisting of the nine consecutive Fibonacci
numbers, 1, 2, 3,5, 8,13, 21, 34, 55 with total sum 142. Starting with 1,
and annexing at each step the smallest positive integer which pro-

duces a set with the stated property yields the set1,2,3,5,8,13,21,
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30, 39 with sum 122. Is thisthe best result? Cana setwith lower total

sum be found?

Partial solution by the proposer.

Partial answer. The setl,2,4,5,9,14, 20,26, 35 has total sum
116, For eight numbers the best set appears to be 1, 2, 3,5, 9, 15, 20,
25 with sum 80. Annexing the lowest possible integer to extend the set
to nine members requires annexing 38 which produces a set with sum
118, It is not clear (to me, at least) how to progress from a best set

of k integers to a best set for k + 1 integers.

H-43 (Corrected) Proposed by H.W. Gould, West Virginia University, Morgantown, West Va.

Let

*® F
elx) = = x M0

n=1
where Fj is the j-th Fibonacci number, find

lim ¢ (x)
x 31 “Tog (I-%)

See specialcase m = 2 in Revista Matematica Hispano-Americana (2)
9 (1934) 223-225 problem 115.

A FAVORABLE RESPONSE

H-44 Proposed by V.E. Hoggatt, |r., San Jose State College, San Jose, California

Let u, =9 and U, = P and u U

called generalized Fibonacci numbers.

+
a1 un, then the un are

(1) Show u = pFn + an-l
(2) Show that if
2 2 _ 2 2
V2n+1 = Y * Yn+l and VZn oS RN B

then Vn are also generalized Fibonacci numbers.
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Solution by Lucile R. Morton, San Jose State College, San Jose, California
We prove formula (1) by induction on n. It is obvious that
ul=p=pF1+qFo and u2=p+q_=p]1"2+qFl
Now let us assume formula (1) holds for n=k and n = k+l. Thus

pF., +qF

o
b
I

k k-1

and

k1 - PFiqr TaFy
Adding we get
Wy Ty = PEL FF) FaF FF )

or _
Ytz = PEryp TaFy o
which was to be proved.

We prove Vn are generalized Fibonacci numbers by showing they satis-
fy the rzecurzsmnformula Vn+2 = Vo

V1 =p +q . We can do this by showing

+ Vn, where VO = 2pq - q2 and

(3) Vontt = Von " Vona

(4) Voniz = Vonn TVon -

From formulas (2)

_ 2 2 2 2
Von ¥ Vonor = (g muy ) Fle  ta)
2 2 _
= Yntl + Yn® V2n+1 ’
and
_ 2 2 2 2
V.2.n+l * VZn - (un * un+1) * (un-l—l un—l)
2 2 2
R R | * Zun+1
(un+1)(un—2) * (un+l)(un+1 tfu,tu —1)
= UYnn (un-Z + Yh-1 * un+2)
2 2
- (un+2 - un)(un+2 * U'n) T U427 8
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Now let us carryour problem a little further. Let m be a fixed inte-

ger, and let Vn: u Are there any restrictions on p and g?

ntm
Since Vn and u are generalized Fibonacci numbers

B B 2 2, 2
Vorr = VoFp TV F 4y = @pa-a)F +(p" + 9 )F

and

Yhtm+l uan * Y+l Fn+1 = (pF

m * qu—l)Fn+(me+1 +qu(Fn+1'

Thus we have

2
(5) epq-q9 = pF_ +qF_ 4

2
(6) p +q = pF +qF

m+1 m

Our question becomes: For what integral values p and g do equa-
tions (5) and {6) hold? Obviously p =g =0 1is a solution. Then
V. _=u_ =0, Let

n n

X_len'rH _ V+Fn’1

p:——-———z.-——— and q—~‘————"—2 3

substituting into equations (5) and (6) we have

2 2 2
(7) 2xy -y = Fm+1 - Fm—l = FZm and
2 2 _ 2 2
&) Xty T P PP T Fomn
Eliminating x and simplifying
4 ; 2 2
5y~ + Z(E‘Zm -2 FZmH)y tE, = o ,
or
4 2 2
5y - ZLZmy tE, C 0
Ths L + \/41_,2' ZOF2
2 2m 2m 2m
v 10
L + L2 5F
2m 2m Zm
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2m 2 m
5 L, * [4(-1) L, *2 Lo -2(-1)" %2

y = 5 = 5 5

Then

and we have 5y2 = ern’ which has no integral solutions, or

2 _ .2 _ 2 m
(9) 5y" = LD +4=5F +4(-1)7 4 4

Now 5y2 = San + 8, which has no integral solutions, or 5y2 = San,

and y= # Fm. Therefore the equations (7) and (8) have the solutions

x=F =F and x = -F = -F forall m, and x = -F
m m

m+1’ Y m+1’ Y m+1’
y = Fm and X:Fm“l'l’ y=—Fm for m =0, -1,
Thus
P = Fon p =0
or
q = F_ q =20
are solutions of (5) and (6) for all m, and
p =0 p = Ferl
or
qQ = F_ q =20
are solutions of (5) and (6) for m = 0, -1.
Therefore Vn U 4T F2m+n when p = Fm+1 and q = Fm
for all m, or Vn:um+n=0 when p =q = 0.
If we consider nonintegral solutions, from (7) and (8) we had
2 2
5y = Lm
which gives us
L L
y = % m and x = =% mtl .
V5 V5
Thus the solutions of (7) and (8) are
I"r’n-H L'rn I"rn+1 Lrn
X = , y = — and x = - ’ y = - —
V5 V5 V5 V5

for all m. Therefore
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Lrn+1 +F
\/-5— m+l um+1
p = =
2 /5
L
=4 F
q = —‘*—2——‘—\/5 - = "—am
V5
and
Lm+1 +F
h NG m+l ﬁmﬂ
p= =-
V5
L
SRS R m
q= 5 "B
= = L
V5

Also solved by Clifton T. Whyburn, Douglas Lind, Clyde A. Bridger, Charles R. Wall,
Jobn L. Brown, Jr., Joseph Arkin, Raymond E. Whitney, Jobn Wessner, W.A. Al-Slalm
and A. A. Gioia (jointly), Charles Ziegenfus and L. Carlitz.

ITERATED SUMS OF SQUARES

H-45 Proposed by R.L. Grabam, Bell Telephone Labs., Murray Hill, N.].

Prove
n P q T
2 2 1 2 n
3 S s s FS = Fn+2 —§(2n +8n+11-3(-1)") ,
p=0 g=0 r=0 s=0

where Fn is the nth Fibonacci number.

Solution by Charles R. Wall, Texas Christian University, Ft. Worth, Texas

Using the identities

k 2 k »
I Fy = X F FkaH ’
n=0 =1
k
k
2 1+ (-1)
2 FF b P

n=0

127
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we have
n P q r n p q
2

b 3 b p> F_ = 3 b b FF
p=0 gq=0 r=0 s=0 p=0 q=0 r=0

n p
_ 2 1+ (-4
= X 2 Fq+1 - —Z——>

P:O q:O

o P
~ Coptl 1+ (-1)P |
= X \FouForet T T

p:O N ;

n N
= r F - ._E - .:i - _(_j_)f(

1 ptl Tptz T 2 1 EI

p:O N .
_og2 Ll (-1)"  n(@n+l)  3(n+l) 1+ (-7
T Tnt+t2 "2 2 7 - q 8
= Fi+2 - % (2n® + 8n + 11 - 3(-1)P)

Also solved by Douglas Lind, L. Carlitz, and Al-Slalm and A. A. Gioia (jointly).

OIKRKIOKHKIKXAKXAKKXK

HAVE YOU SEEN?

J. Arkin, ""An Extension of the Fibonacci Numbers, '"" American Math-

ematical Monthly, Vol. 72, No. 5, March 1965, pp. 275-279.

Marvin Wunderlich, ""Another Proof of the Infinite Primes Theorem, '
American Mathematical Monthly, Vol. 72, No. 5, March 1965, p. 305.

This is an extremely neat proof for the Fibonacci Fan!

Benjamin B. Sharpe, Problem 561, Mathematics Magazine, Vol. 28,
No. 2, March 1965, pp. 121-122.



