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In this paper we develop some ideas with the recurring series

(1) B_=kB_| *kB_ B, =1, (k

2 0 and k2 £0) ,

-1 1

and show a relationship between this sequence and the simple network
of resistors known as a ladder-network.

The ladder-network in Figure 1 isan important network in com-
munication systems. The m-L sectionsin cascade that make up this

network can be characterized by defining:

(2) a) the attenuation (input voltage/output voltage) = A,
b) the output impedance = Z»
c) the input impedance = zZy-
Rl Rl Rl Rl
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Figure 1
A result obtained by applying Kirchhoff's and Ohm's Laws to
ladder-networkswith m =1, 2, 3, ..., R, = R,k,, wastabulated with

71 271°
the results in Table 1, where setting k1 =1, R2 =1 ohm, the network
in Figure 1 was analyzed by inspection [1] .
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Table 1

We observe that the nth row in Table 1, may be written

| m | %0 | & | “1 |
n | (Con 2V 1Ry | Con | (Con/Yan )Ry
where,
3 ac =x/fc tc L co =1,
b) Yn ~ k}/Z‘Yn-l +Yn-Z’ Yo = l/k}/z

It then remains to solve for Y, and Cn in (3), to be able to analyze
(Figure l) by inspection for any value of k1 (kl # 0), where R2 =1 ohm.
So that, in (1), we let

@ a) w = g e ra) Bz
b vo= (k- 4 4k2)1/2)/2 ,
where it is evident,
c) kl = w+v ,
and
d) k2 = - WV
Then, combining (c) and (d) with (1), leads to
(5) B = ((w' - v)B__| - wy(w-v)B_ )/(w-v)
Bn = ((W3-V3)Bn_2 - wv(wz—vz)Bn_S)/(w-v) ,
B = (W™ - v (wHv) - WV(Wn-l - vn_l)Bo)/(w—v) ,
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and we have n+l n4l

(6) B =¥ -V
n W -V
. . 1/2 . .
Where, in (1) we replace kl with k1 and k2 with 1, and combin-
ing this result with (3) and (6), leads to

(ki/z + (k1+4)1/2)n+1 ) (ki/z C(k +4)1/2)n+1

- 1 _
(02 ¢, = (1) 17271 = Pl),
1

)2

and

1]

b) oy, = i)/

(8) Theorem.
The attenuation (input voltage/output voltage = A) of m-L sec-
tions in cascade in a ladder-network is given by
2m-2

AT = ¥ C_((-C

T
ACo 1)/ Co2)
r=0

)

The proof of the theorem rests on the following
(9) Lemma.

The power series

n
-1nH* T B X,

r
r=0
is always a square, where Br is defined in.(1).

Proof of lemma.

Let
n
10 1 = (I-kx - k,x°)(3 B_x"
( ) - ( - 1X - ZX I‘X ) ’
r=0
then, by comparing coefficients and by (1), we have
(11) % = —(Bnkl +Bn-1k2) _ _Bn+1
- B k " Bk ’
n 2 n 2

. . . 2
and replacing x with (—Bn+1)/(Bnk2) in (l-klx-kzx ), leads to

2
x

(12) 1-k x-k,

2 2 2
= (BnkZ+Ban+lkl—Bn+l)/(Bnk2)

By (4, d) and (6) it is easily verified
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2 n
(13) B - BuiiBnar (-ky)™ s
so that
2 2 _ n  n+tl
(14) Bk P By Bntiky - By = G K

Then, replacing the numerator in (12) by the result in (14) leads to

2 : 2
(15) 1-k x-k,x = ((—I)Dk]g)/Bn ,
so that (10) may be written as
n
n_2 _ T
(16) (-1)’'B. = ¥ Bx
r=0

which completes the proof of the lemma.

(17) Theproof ofthe theorem is immediate, when in (11) and (16), we

replace n with 2m-2, k1 with ki/z, k2 with 1, and combine the

result with (7, a) and the values of the attenuation in Table 1.
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