## LADDER NETWORK ANALYSIS USING POLYNOMIALS

JOSEPH ARKIN Spring Valley, New York

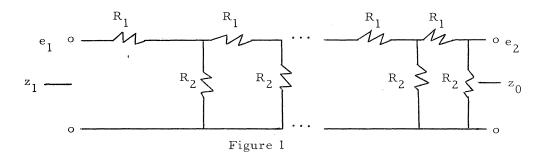
In this paper we develop some ideas with the recurring series

(1) 
$$B_n = k_1 B_{n-1} + k_2 B_{n-2}$$
,  $B_0 = 1$ ,  $(k_1 \text{ and } k_2 \neq 0)$ ,

and show a relationship between this sequence and the simple network of resistors known as a ladder-network.

The ladder-network in Figure 1 is an important network in communication systems. The m-L sections in cascade that make up this network can be characterized by defining:

- (2) a) the attenuation (input voltage/output voltage) = A,
  - b) the output impedance =  $z_0$ ,
  - c) the input impedance =  $z_1$ .



A result obtained by applying Kirchhoff's and Ohm's Laws to ladder-networks with  $m=1, 2, 3, \ldots, R_1=R_2k_1$ , was tabulated with the results in Table 1, where setting  $k_1=1$ ,  $R_2=1$  ohm, the network in Figure 1 was analyzed by inspection [1].

| m | <sup>z</sup> 0                                                 | A                                                 | <sup>z</sup> 1                                                          |
|---|----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|
| 1 | R <sub>2</sub>                                                 | (k <sub>1</sub> +1)                               | (k <sub>1</sub> +1)R <sub>2</sub>                                       |
| 2 | $\left(\frac{k_1+1}{k+2}\right)^R 2$                           | (k <sub>1</sub> <sup>2</sup> +3k <sub>1</sub> +1) | $\left(\frac{k_1^2 + 3k_1 + 1}{k_1 + 2}\right) R_2$                     |
| 3 | $\left(\frac{k_1^2 + 3k_1 + 1}{k_1^2 + 4k_1 + 3}\right)^{R_2}$ | $(k_1^3 + 5k_1^2 + 6k_1 + 1)$                     | $\left(\frac{k_1^3 + 5k_1^2 + 6k_1 + 1}{k_1^2 + 4k_1 + 3}\right)^{R_2}$ |
|   | •<br>•                                                         | ·                                                 |                                                                         |

Table 1

We observe that the nth row in Table 1, may be written

| m | <sup>z</sup> 0           | A               | $^{\mathrm{z}}$ 1      |
|---|--------------------------|-----------------|------------------------|
| n | $(C_{2n-2}/y_{2n-1})R_2$ | C <sub>2n</sub> | $(C_{2n}/y_{2n-1})R_2$ |

where,

(3) a) 
$$C_n = k_1^{1/2}C_{n-1} + C_{n-2}$$
,  $C_0 = 1$ ,  
b)  $y_n = k_1^{1/2}y_{n-1} + y_{n-2}$ ,  $y_0 = 1/k_1^{1/2}$ .

It then remains to solve for  $y_n$  and  $C_n$  in (3), to be able to analyze (Figure 1) by inspection for any value of  $k_1$  ( $k_1 \neq 0$ ), where  $R_2 = 1$  ohm. So that, in (1), we let

(4) a) w = 
$$(k_1 + (k_1^2 + 4k_2)^{1/2})/2$$
,

b) 
$$v = (k_1 - (k^2 + 4k_2)^{1/2})/2$$
,

where it is evident,

c) 
$$k_1 = w + v$$
,

and

d) 
$$k_2 = -wv$$
.

Then, combining (c) and (d) with (l), leads to

and we have

(6) 
$$B_{n} = \frac{w^{n+1} - v^{n+1}}{w - v}.$$

Where, in (1) we replace  $k_1$  with  $k_1^{1/2}$  and  $k_2$  with I, and combining this result with (3) and (6), leads to

(7) a) 
$$C_n = \frac{(k_1^{1/2} + (k_1 + 4)^{1/2})^{n+1} - (k_1^{1/2} - (k_1 + 4)^{1/2})^{n+1}}{((k_1 + 4)^{1/2})^{2^{n+1}}} = \phi(k_1),$$

and

b) 
$$y_n = \phi(k_1)/k_1^{1/2}$$
.

(8)Theorem.

The attenuation (input voltage/output voltage = A) of m-L sections in cascade in a ladder-network is given by

$$A^{2} = \sum_{r=0}^{2m-2} C_{r}((-C_{2m-1})/C_{2m-2})^{r}) .$$

The proof of the theorem rests on the following

(9) Lemma.

The power series

$$(-1)^n \sum_{r=0}^n B_r x^r$$
,

r=0 is always a square, where  $B_r$  is defined in (1).

Proof of lemma.

Let

(10) 
$$1 = (1-k_1x - k_2x^2)(\sum_{r=0}^{n} B_rx^r),$$

then, by comparing coefficients and by (1), we have

(11) 
$$x = \frac{-(B_n k_1 + B_{n-1} k_2)}{B_n k_2} = \frac{-B_{n+1}}{B_n k_2} ,$$

and replacing x with  $(-B_{n+1})/(B_nk_2)$  in  $(1-k_1x-k_2x^2)$ , leads to

(12) 
$$1-k_1x-k_2x^2 = (B_n^2k_2+B_nB_{n+1}k_1-B_{n+1}^2)/(B_n^2k_2).$$

By (4, d) and (6) it is easily verified

(13) 
$$B_n^2 - B_{n+1}B_{n-1} = (-k_2)^n$$
,

so that

(14) 
$$B_n^2 k_2 + B_n B_{n+1} k_1 - B_{n+1}^2 = (-1)^n k_2^{n+1}.$$

Then, replacing the numerator in (12) by the result in (14) leads to

(15) 
$$1-k_1x-k_2x^2 = ((-1)^nk_2^n)/B_n^2,$$

so that (10) may be written as

(16) 
$$(-1)^{n}B_{n}^{2} = \sum_{r=0}^{n} B_{r}x^{r} ,$$

which completes the proof of the lemma.

(17) The proof of the theorem is immediate, when in (11) and (16), we replace n with 2m-2,  $k_1$  with  $k_1^{1/2}$ ,  $k_2$  with 1, and combine the result with (7, a) and the values of the attenuation in Table 1.

## REFERENCES

- a) S. L. Basin, "The Appearance of Fibonacci Numbers and the Q Matrix in Electrical Network Theory," Math Mag., 36(1963) pp. 84-97.
  - b) S. L. Basin, "The Fibonacci Sequence as it Appears in Nature," Fibonacci Quarterly, 1(1963) pp. 54-55.

The author expresses his gratitude and thanks to Professor L. Carlitz, Duke University; Professor V. E. Hoggatt, Jr., San Jose State College; and the referee.

## 

## REQUEST

The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference, send a card giving the reference and a brief description of the contents. Please forward all such information to:

Fibonacci Bibliographical Research Center,
Mathematics Department,
San Jose State College,
San Jose, California