REPLY TO EXPLORING FIBONACCI MAGIC SQUARES* JOHN L. BROWN, JR. Pennsylvania State University, State College, Pennsylvania Problem. For $n \ge 2$, show that there do not exist any nxn magic squares with <u>distinct</u> entries chosen from the set of Fibonacci numbers, $u_1 = 1$, $u_2 = 2$, $u_{n+2} = u_{n+1} + u_n$ for $n \ge 1$. Proof. Trivial for n = 2. If an nxn magic square existed for some $n \ge 3$ with distinct Fibonacci entries, then the requirement that the first three columns add to the same number would yield the equalities: (*) $$F_{i_1} + F_{i_2} + \ldots + F_{i_n} = F_{j_1} + F_{j_2} + \ldots + F_{j_n} = F_{k_1} + F_{k_2} + \ldots + F_{k_n}$$. Since the entries are distinct, we may assume without loss of generality that $F_{i_1} > F_{i_2} > \dots > F_{i_n}$, $F_{j_1} > F_{j_2} > \dots > F_{j_n}$ and $F_{k_1} > F_{k_2} > \dots > F_{k_n}$. Noting that the columns contain no common elements, and by rearrangement if necessary, we assume $F_{i_1} > F_{j_1} > F_{k_1}$, again without losing generality; thus, $F_{i_1} \ge F_{k_1} + 2$. $$F_{i_1} + F_{i_2} + \dots + F_{i_n} > F_{i_1} \ge F_{k_1+2}$$, while $$F_{k_1} + F_{k_2} + \dots + F_{k_n} \le \sum_{i=1}^{k_1} F_i = F_{k_1+2} - 1$$ This contradicts the equality postulated in (*), and we conclude no magic squares in distinct Fibonacci numbers are possible. ^{*}The Fibonacci Quarterly, October 1964, Page 216.