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1. INTRODUCTION
Imagine a particle the number of whose collisions with other par-
ticles during the tth time intervalis given by ¢(t). Assume that this
particle possessesa property, p, whichit can transmit by collision to
every particle with which it collides. Further suppose that every par-
ticle that has received property p by collisioncan also transmit it by
collision. Assume that for an indefinite period of time every particle
possessing property, p, collides only withthose particlesnot possess-
ing this property. The number of new particles to which property, p,

has been imparted is given by the following model.

2, THE MODEL
Let Ai be the number of collisions with new particles in the time
interval i < t < i+ 1 by particles possessing property, p, at t=1i.
The new particles do not start their private times until the end of the

time interval of their initial collision.

(1) Ay = 1
Ay = (1)
A, = (2) + ¢°(1)
By = $(3) +262)$(1) + ¢ (1)
b, = $4) + [2603)p(1) + $7(@)]+ 362167 (1) + (1)

A; = F(h,9)

The model is obtained as follows:

Up to t=1, AO generates the increment Al’ whose magnitude
is &(1), the number of particles with which AO collided in the first
time interval.

Atthe time t = 2, AO has collided with ¢(2) more new particles
during the second time interval and Al has collided with ¢(1l) new
particles, since its collisions are subject to the phase rule constraint
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of its own private time. Therefore when t = 2 in public time,
A, = B(2) + B(LIB(1) = P(2) + $7(1).

When t = 3, AO has collided with ¢(3) more new particles during
the third time interval for it is in phase 3 of its private time, each
particle of Al = ¢(1) hascollided with ¢(2) more new particles, pro-
ducing @(1)$(2) new particles altogether, because Al is in the sec-
ond phase of its private time. FEach particle of AZ collides with ¢(1)
new particles since‘it is in the first phase of its private time, thus
producing

A, p(1) = (B(2) + SUNS) = R)(L) + $(1)

particles. Therefore when t = 3, we have

6, = B3)) + )] + Bl + ¢ (1)
= P(3) + 26(2)B(1) + (1)

Now if we substitute ¢{t} = t into themodeldisplay(l), we obtain

(2) Ay =1
A1=l
AZ = 2+1% = 3
A, = 3+2°-1+1° = 8
A4: 4+2-3-1+22+3-2-12+14= 21

Neglecting AO, one observes that the numbers 1, 3, 8, 21, 55,
ceey U = 30
n n

quence

- Un are the alternate terms of the Fibonacci se-

+2 +1

1,1,2,3,5,8,13,21, 34,55, ..., Fn+2= Fn+1 +Fn

so that the sequence of cumulative sums (including AO) is
1, 1+1=2,1+1+3=5,1+1+3+8=13, ...,

=3 Un - Un whichis the other setof alternate Fibonacci num-

U
nta +1
bers. The proof of these statements will follow as a special case of

the theorem in the following section.

3. ANOTHER SPECIAL MODEL

If we assume that the time generator is ¢(t) = kt (k a positive

integer), the same model display (1) yields
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(3) By = 1
A =k
2
A, = k% +2k
A, = K+ ak” & 3k

= k4+6k3 -!-1Ok2 + 4k

.;;D

Ai = Pi(k)
Note: The coefficient of k'* in the polynomial Pn(k) is the number
of distinct compositions of integer n in m positive integers. The
coefficients are also the alternate rising diagonals of Pascal's arith-
metic triangle upward from left to right.
We now prove the following theorem.

Theorem: If ¢(t) = kt, then model display (3) has as its nth row a
polynomial Pn(k) satisfying the recursion relation:

P,k = (k+2)P_ (k) - P (k) ,
2

where Pl(k) = k and PZ(k) = k" + 2k,

4. PROOF OF THE THEOREM
Let Tn(k) be the total number of particles possessing property,
ntl (k) = Tn (k) + An+1 , while collectively
the Tn(k) particles collide with An+1 new particles during the next

p, at time t = n. Clearly T

time interval, each particle collides with k more new particles than

during the previous time interval so that

(4) An+2 - k(Tn(k) * An+l) * An-l-l - an+1(k) * An+1

1 n+l
(5) T oK) = (2) T_, () - T (k)

Thus, since An+ =T (k) - 'Tn(k) equation (4) yields

But, since A =T (k) - T (k) isthedifference of two solutions of
n+l n+l n 2

(5), itis alsoa solution of (5). Now, Alzkzpl(k) and A, =k"+2k=P, (k)

and the proof is complete. If k = 1, then (5) becomes

(6) Uptz = 3Un+1 - U

If U1 = Pl(l) =1, and U2 = PZ(l) = 3, thenthe numbers generated are

the alternate Fibonacci numbers promised after (2), while

= - = - :A A: =
U T (1) AO 1, and U T, (1) y tA =1+1=2 ,

2
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recursion relation (6) yields the other set of alternate Fibonacci num-

bers as the sequence of cumulative sums, the total particle count.

5. CONCLUDING REMARKS
One is directed toadvanced problem H-50 December 1964, Fib-
onacciQuarterly, for the partitioning interpretation of the integer n of
the model for @(t) = kt.

Suppose one defines two sets of Morgan-Voyce polynomials

bO(x) =1, b}(x) =1+ x; Bo(x) =1, Bl(x) =2+x ,
both sets satisfying
(7) P )= (x+2)P_, (x)- P_(x), n20

It is easy to establish that
Pn(k) = An =k Bn—l(k)

T k)=A0+AI+...+A = b_(k)

ol
Thus for k=1, we againfind Bn_l(l) = an and bn(l) = anﬂ. See
corrected problem B-26 with solution by Douglas Lind inthe Elementary
Problem Section of this issue, where the binomial coefficient relation
mentioned in the note of Section 3 is shown. A future paper by Prof.
M. N. S. Swamydealing extensively with Morgan-Voyce polynomials will
appear in an early issue of the Fibonacci Quarterly.

Acknowledgment: The author is completely indebted to Dr. V. E.

Hoggatt, Jr., for bringing to his attention the theorem and its proof.

Additional references to work along the lines of generated composi-
tions — some of which yield numbers with Fibonacci properties — will

be found in the references at the end of this paper. (Seenote, page 94)
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