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The rectangle whose diagonals form equilateral triangles with its
widths has some surprising properties, including a related Fibonacci-
like series of integers. Before discussing this rectangle, for later
comparison, we call to mind another rectangle. The famous Golden
Rectangle has the property that when a full-width square is cut from
one end, the remaining part has the same proportions as the original
rectangle, the ratio of length to width being (1 + V5)/2. Joseph Raab
discussed other golden-type rectangles [1] , which have the property
that whenanintegral number k of full-width squares are cut from one
end, the remaining part has the same proportions as the original rec-
tangle. These golden-type rectanglesalso have related series of inte-
gers.

In the rectangle whose diagonals form equilateral triangles with
its widths, the ratio of length to width is \/.3:, certainly not ''golden.'
But after cutting a full-width square from one end, there appears a
glitter as the ratio of length to width becomes (1 + V3) /2. Operating
similarly on this rectangle, the ratio becomes V3 + 1, and repeating the

process one last time makes the ratio of length to width again V3,
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Some more ''mear-golden'' rectangles appear as more general
cases of removing squares of the width in a rectangle to obtain rec-
tangles similar to the original. To simplify the discussion, we will
designate a rectangle by a capital letter and its ratio of length to width
by the corresponding small letter.

From a rectangle R with width x and length y + mx, remove
the total number m of full-width squares contained in R to obtain
rectangle P. From P, remove the total number n of full-width

squares contained in P to form rectangle R'.

y+mx-———————1

X - ny R'

x ny

If R' is similar to R, then r'=r so that y/(x - ny) = (y + mx)/x.
Solving for x/y 1 p, we find

r'=r = (mn+ \lmznz + 4mn)/2n,
\’ 2 2
p=(mn+ Vm~n® + 4mn)/2m,

(Note that R:R' = rp, and that m = n =1 vyieldsthe Golden Rectangle.)
Whenwe cut full-width squares from P, if we remove an integral
number n less than the total number of full-width squares available,

and if R' and R ‘are similar,

r = ( J(m+n)2+4+m—n)/2,i
p=( V(m+n)2 +4 +m+ n)/2.
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(Note againthe Golden Rectangle for m =1 and n =0, when P = R'.)

Suppose that we remove the full amount of available full-width
squares in forming P and R', but R' and R are not similar. Ifa
rectangle T, similar to R, can be obtained from R' by the removal

of an integral number q of squares of the width of R', then

r=t= (\I nz(n'rl-q)Z + 4n(m+q) + n(m - q))/Zn,

= (N nd(m+q)? + 4nfm+q) + n(m + a))/2(m + q),

o
1

( \/ nz(m-l-q)‘Z + 4n(m+q) + n(m + q)/Zn.

L2}
n

Again, g =0 and m =1 yields the Golden Rectangle, with
r=p=1xr'=(l+ V5)/2., Also, q=m =n=1 yields(for R and T) the
rectangle with diagonals forming equilateral triangles with its widths,
with p = (1 + Y3)/2.

The similarity of form between the ratio (1 + \[3')/2, hereafter
called 6, and the golden ratio given above, suggests that we seek a

Fibonacci-type series associated with powers of 6. Consider the fol-

lowing:
6 =1+ V3)/2 =(1)8+0
0% =2+ VB2 =(1)0+1/2
63-(5+33)/4 =(3/2)0 +1/2
0% = (7 + 4By /4 = (4/2)0 + 3/4

6° - (19+11V3)/8

(11/4)6 + (4/4)
(15/4)8 + (11/8).

D
o
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= (26 +15V3) /8

The numerators of either the coefficients of 6 or the constant addends
and the coefficients of V3 form the following series: 1, 1, 3, 4, 11,
15, 41, 56, ... It can be proved by induction that this series is de-
fined by

Pon " Fon1 v Pon

= 2P + P

Pont1 = #Fon ¥ Pop 1o 87 1 20 e,



230 A NEAR-GOLDEN RECTANGLE AND RELATED Oct.

where P1 = PZ =1, A second series: 1, 2, 5, 7, 19, 26, ..., having
the same recursion formulas as the above, appears in the computation
ofpowersof §. We shall call the nth term in the second series Rn.

If 6=(1+ vY3)/2and¢= (1 - V3)/2, it is not difficult to show

by induction that

p (en_(#n)/ ﬁ.z[l—n/ZJ,

n
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R = (@R g2 B2 Lo o s

n

1

where [x] is the largest integer in x. The series just defined bear a
striking resemblance to the Fibonacci and Lucas series as defined by
the Binet formula interms of the golden ratio, where the nth Fibonacci

and nth Lucas number are given respectively by

i ﬁn n 1-
F =2 "P 1 =a"+p"fora-= , B=
n V5 o 2

N

Use of the above form for Pn and Rrl and standard limittheorems

leads to
Limit P, /P, = § and Limit R, /R, , =¢;
n-> @ n-—»o
Limit P, ., /pZn = 26 and Limit R+ /RZn =2¢.
n—o n-—s o

Finally, as n increases, Rn/Pn oscillates about its limit, “3.

Also established by induction are forms for powers of §.

- (n-1)/2 /2] . (nt1)/2]
6" = (P 0)/2 (172 P__,/2 B/2] - (R_+P_V3)/2 [

and

/2 n/2] o 9/2 [(n‘l)/2]>

-n n
o = (-2) <Pn+1

For comparison, if
1 +\5

2
where Fn is the nth Fibonacci number and Ln the nth Lucas number.

a, then ot = (L +F \@)/2 s
n n
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Other theorems, also possible to establish by induction, are:

2n
i__)_:l Py =Py - (Pop T1)/2
2n+l
3 Py /2
2(2n-1) 5
1‘2:1 P = PonPont1 - Pano
_ n+l
PnPn+3 - Pn+1 1Dn-I-Z = (-1) '

Considering the even ordered elements and the odd ordered ele-
ments of the series separately leads to

Pon “%Fon2"Fong

Pons1 = %51 - Ponos

which in turn can be used to prove the following relationships between
Rn and P and summation formulas for even or odd elements of the

series P _:
n

Ron = Pon-1 + Pop
3pZn - RZn—l * RZn’
n
51 Py = Py - 1)/2= (3P, - P, 5 - 1)/2,
and
n
2 F2ie17 Pen” (Pont3 = Pong1)/2-
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