FIBONACCIOUS FACTORS
ROBERT B. ELY, Il

1. INTRODUCTION

In earlier issues of the Quarterly there have been shown and
provenanswers to the following questions about the basic series (1, 1,
2, 3, 5---).

(1) By what primes are the various terms, U , divisible?
(2) At what points do various primes first ap;ear as factors?
(3) At what periods do they reappear?
In this paper we deal with answers to the same questions as to

the general series (a, b, a + b, a + 2b, 2a + 3b ---).
2. PERIODS OF REAPPEARANCE ARE THE SAME

Our task is simplified if we answer the last question first:

If k is the period at which a prime repeats its zero residues
in the basic series, k 1is also the period of zero residues in any
general series.

Suppose that a prime first divides the nth term of a given ser-
ies (a, b, a *+ b ---) and let the (n-l1)th term be c. Then modulop,
(which we hereafter abbreviate to ''[p'') the series runs in this neigh-
borhood as ¢, 0, ¢, ¢, 2c, 3c etc. The terms after the zero are
those of the basic series each multiplied by c. Now if xz o [p, so
also cx%o if c%_o [p. Again, if x= o [p, soalso cx=o [p. This
means that in the two series (1, 1, 2, ---) and (c, c, 2c ---) the

zeros appear at the same terms

3. SUMMARY OF PREVIOUSRESULTSAS TO FIRST APPEARANCES

(1) There are some terms of the basic series divisible by any prime

one may choose.

(2) The term Ua
U, =144

12
is divisible by

is divisible by Ua’ U U ... E.G.
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U U, =1
U3 =2
U4: 3
U6 =8
(3) Such a term Uni, for which n is composite, may also have

other factors, called '"primitive prime divisors;' and the general form
of these primes is determined by the following rules (but their identity
must be found by trial and error).

(A) If n is odd; p is of the form 2 kn %1

(B) If n=2(2r*1); p is of the form nk %1

(C) If n=2"(2r+1); p is of the form nk/2 - 1
Examples are listed in the February 1963 Quarterly at pp. 44-45.
(4) The factthat n is prime does notimplythat Un is prime. E.g.,
U U119 = 4181 = 37 x 113; even though 19 is prime. However, the con-
verse is true: If Ul.,1 is prime, so also is n.
(5) The even prime, 2, is a factor of every third term of the series;
and the odd prime 5 is a factor of every 5th term.
(6) All other odd primes are of the forms#1 and # 3 [10. They
appear and reappear as factors according to the following rules:

(a) If pz=x1l [l0, it will first appear when the n of U, = %’
d being some positive integer; and will reappear every nth term

thereafter;

pt 1
d
nth term thereafter, d again being some positive integer. E.g.,

(b) If p=+3 [l0, it will first appear when n = , and every

3 divides U4 and every 4th term thereafter

7 it U8 " [N Sth " "
11 " UlO " [N lOth (R} "
13 " U? 1 (B 7th 1Al n
17 " U9 " r 9th t "
19 A1 U18 1 r 18th [N 1"

(c) The rules for determining the divisor, d, of p+1 in (6)
have not yet been given. Examination of the primes less than 80 give
d=1, 2 or 4 in all cases except 47, where it is 3. However, in the
range from p = 2,000 to 3,000, given in the February 1963 issue at
pp. 36-40, d has values ranging from 1 to 78.
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(7) Nothing has thus far been said about the appearances and periods

of composite factors, ab (a #b), nor factors which are powers, pc.

4, NEW ANSWERS TO THE QUESTION OF FIRST APPEARANCES

(1) "By what factors are the terms of the general series (a, b, a +b,
at2b,t+ 3b...) divisible?"

It can be shown that if A, B and C denote anythree successive
terms in this series, then B2 - AC = £+ a constant, nomatter which
three terms are chosen, and no matter what the values of A and B
(the first two terms).

Specifically, work on the first few terms of the general series

shows what this constant must be

bznab—a2

1

bz—a(a+b)

2

or (aﬂ'ﬂb)2 -b(at+2b)=a"+ ZaLber2 - ab - ab2

~ b%+ ab+a’

i

= —(b2 - ab - az)

How canwe make use of this constancy of B‘2 - AC to determine
the possibility of a given prime, p, as a factor of some term inthe
general series? By changing the equation to a congruence [p. If any
term, C, ofthe seriesis divisible by p; then C and itstwo immediate

predecessors must satisfy the congruence

B2 . AC= % (b% - ab - a%) [p

Butweareassuming C=0 [p. Thiseliminatesthe term - AC, Hence
2 2

we must have B "= £ (b~ - ab - az) [p-

In other words, once we know the first two terms, a and b of
a general series; we know that the only possible factors for terms of
the series are those for which #+ (b2 - ab - az) is a quadratic residue.
Primes of which this is nottrue cannot be the modulus in the congruence

BZE + (b2 - ab - az) [p.
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However, it does not follow from the necessity of this condition
that it is also sufficient. E.g., 1, 4, 5 ... is never divisible by 89.
Nevertheless, Brother Alfred has shown that there are some primes
which are factors of all Fibonaccious series.

(2) We cannolonger say that Upe is divisible by 0., Uy and UC,
as a single example will show. Consider 3, 7, 10, 17, 27, 44, 71,
115, 186, 301. U;o = 301 is divisible by U, =7, but not by U5 = 27.
(3) Neither can we say of a general series that if U_ is prime, so
too is n. Vide 2, 5, 7, 12, 19, 31 ... for which U6 is prime but 6
is not.

(4) (2) Nor dowehavein the general series a set of primitive prime
factors, in view of (2) above.

(b) Thus weare fairly limited, as to rules for the forms of cer-
tain, possible or impossible prime factors of the general series. We
make here only two observations:

(i) For primes of the form p = 4k+ 3, either a or -a is
aresidue for any value of a. Hence these primes are possible, but not
necessarily certain factors of any general series. /

(ii) On the other hand, for primes of the form p = 4k + 1,
there can be values of a for which neither a nor -a is a residue.
E.g., neither 2 or -2 is a residue [5; and neither #2 nor 5 nor
+6 are residues [13. Hence these primes are impossible factors of
general series for which the initial terms are correctly chosen.

E. g., noterms ofthe series 1, 63, 64, 127 are ever divisible by
5, 11, 13 or 17, since % (63Z - 64) = = (3969-64) = £ 3905 is a non-
residue of each of these primes.

Hence let us put aside for the moment the more particular rules
of forms of factors of the general series, and turn to the place of first
appearance of possible factors. The intervals of reappearance are as
in the basic series.

(5) Firstletus review 2 and 5. If any series is reduced 2, we have
only four patterns, depending on choice of initial terms

> 0, v

’ H ’
B ] ’
3 sy U, 1, 1, U  oeee00o0

1
0
1
0

O = O =
_ 0 O =
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That is to say: one of the first three terms must be even; and there-
after either all or every 3rd term is even.

For 5, the situation is a little more complex. Actual computa-
tion of first appearances for the various combinations of remainders

of the first two terms enables us to make the following table:

If the second term has a remainder of

0 1 2 3 4 (5
e o [ATI[AI
remainder 1 2 5 41 N| 3
of 2z N[5]|3]4
3112¢ 413151 N
4 4121 3j] N| 4165

the entries show the number of the smallest term divisible by 5, where
N signifies ''none.'" Thus we see that 5 may first appear as a factor
of any term from the lst to the 5th, or be suppressed entirely; by
proper choice of first terms. However, as the reader can easily ver-
ify, if 5 appears once as a factor, it reappears in every 5th term
thereafter.

(6) Now, as before, let us turn from these two special cases of 2
(the only even prime) and 5 (the only one = 5 [10) and consider the re-
maining ones of the forms #1 and.+3 [10. We make the following

conjectures:

(a) Byproper choice of initialterms we canmake any such prime,
p, first appear as a factor of any term whose number (rank)<p; or, if

p is of the form 4 k + 1, we can suppress it altogether.

(b) If such a prime appears at all, it will reappear at the same

interval as in the basic series.

To test these conjectures, let us make tables, as for 5, for 7
and 11.
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0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 2 {8 1714145 6| 3
242 15 81617 31 4
342 (61418131517
442 1715 3181446
5 2 1441317 61815
6 | 2 13 615 414]7 8

Note the absence of N's; since 7 is always a factor of some terms of

any general series.

For 11: b,
Second term

0 1 2 3 4 5 6 o g 5 10
0 1l1 1 1 1 ~ 1 1 i i )
1 2 10 9 5 N P 3 5 N - .
2 2 6 |10 8 9 N 5 z 3 3 -
3 2 N N | 10 4 7 '9 3 T g -

4 2 5 6 7110 N ) 3 5 3 1\.,1”,
5 2 7 8 4 5 10 3 N 6 N 5
6 2 9 N 6 N 3710 5 P g 5
7 2 N 4 9 3 8 N 710 5 3 z
8 2 8 5 3 6 9 7 TT1% N <
9 2 4 3 N 7 5 N 9 5T 1o A
10 2 3 7 N 8 6 4 ’ N 5 57110

Observing these three tables, we see the following common features:

(i) The top line is always all 1's;

(ii) The left column is always all 2's, except for the top entry.

(iii) One diagonal is all 3's.

(iv) Theother diagonalisall k's (where k will be seen to be the
constant of reappearance, in this case 10), except for the upper left
corner.

(v) The nth line (except the top)is line 1 ''spaced out' at inter-
vals of m from the 3.

(vi) Hence only line 1 need be computed.
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Some of the features are obvious:

(i) The top line of 1's mean only that a (in the series a, b,
a+b...) 2 o [p. Hence the first zero is at the first term.

(ii) The left column of 2's is similarly explicable. The excep-
tion of 1 at the top left corner is because both a and b = o, and the
earlier of the two is a, the l1st term.

(iii) The diagonal of 3's is due to their representing series in
whichthe first two terms are a, p-a, p. The a's vary; but p in the
3rd term does not.

(iv) The identities inthe other diagonal represent general series
ees 3, 3, 6...,

4, 4, 8...). Theterms of each of these series are those of the basic

of which the first two terms are both a (2, 2, 4.

(1, 1, ...)eachmultipliedby a., Consequentlyifany term in the basic
series gave a remainder [p it would also give a remainder (usually
different) when multiplied by a constant. On the other hand, if the nth
term, U, of the basic series = o [p; so also a Un Z o [p. Thatisto
say, the earliest zero remainder in (a, a, 2a ...) occurs at the same
term, regardless of the value of a.

(v) The ''spacing out'' of Line 1 to get the entries in Line n of
the tableis explicable similarly. If x =o [p so also kx=o [p while
if x ;é o [p soalso kx $ o [p, in the first case for any value of k,
and in the second so long as k% o [p.

This means that the occurrence of zeros in any series (a, b,
a +b...)is unchanged if each term in the series is multiplied by the
same constant, k%o [p. In other words, while non-zero remainders
may vary, p will occur as a factor of precisely the same terms in
series(l, 2, 3,5 ...), (2, 4, 6, 10...), (3, 6, 9, 15...) etc. Hence
the entries in line 1 and col. 2, line 2 and col, 4, line 3 and col. 6 of
the table must be the same; and similar reasoning shows how the rest
of the spacing out follows the same pattern,

(vi) Finally we must consider line ''l'' of the table. To fill it
out the hard and obvious way requires us to run out, reduced [p, the
various series (1, 2, 3, 5 ...), (1, 3, 4, 7...), (1, 4, 5, 9...) un-

til we reach a zero in each; and then make corresponding entries in
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line 1. This done, spacing out as per (v) will complete the table.

An alternative, or a cross-check can be made as follows: Sup-
pose we run out the basic series for a prime we have not yet considered,
13. The series reduced [13 to the first zerois 1, 1, 2, 3, 5, 8, O.

Attachedis a table partially filled in, with the invariable l1st row
of 1's, left column of 2's, diagonal of 3's, and diagonal of 7's (the
zero period of the basic series). There are other entries, which we

now explain.

For [13
Remainder of Second Term (b)
o 1 2 3 4 5 6 7 8 9 10 11 12
ol1 | 1|11 |1rlrl1]1j1]1]1 1 1
I, - N
2| 2 7 5 3 [l
T - i
Remainder 3 2 7 /,/: 3 \‘S\
of 4l 2 7 3
T
First 5SCZ& H7” 7 'mll
Term 6 2 713
(a) 7, 2 307
a5 \ﬁ >
2ZZ N\ == R
9] 2 3 7
10) 2. FRE p == 7
11:;\2.\:% 3 | =
ANV 11 T I I O B
1 1 2 3 5 8 0 marked ///
8 8 311 1 12 o v ANSY
12 12 11 10 8 5 0 v ==
5 5 10 2 12 1 0 r i

The entry in (1, 1) is 7; because we have just seen that 7 is the
zero-period of the basic series. There is similarly a 6 in the square
(1, 2) because after a look at the basic series, we see that if we start
anew series withfirst terms 1, 2, instead of 1, 1; we arrive at 0 after
6 terms instead of 7. In fact, as the 7 and 11 tables have illustrated

already, the entry in square (1, 2) of the table is always k-1, where



1965 FIBONACCIOUS FACTORS 195
k is the number of the first zero term in the basic series. Similarly
the entry in the square (2, 3) is always k-2; and in the square (3, 5) it
is k-3; etc.; becauseas we select later and later pairs of terms in the
basic series to start new series, we reduce one by one the number of
the first term in which zero appears. Hence we can, without further
computation than the basic series reduced [p, fill in a number of en-
tries on various lines of the zero appearance table (see the attached
figure for 13).

Moreover, we can use these entries, with a little more trial and
error, to work back to values in line 1 of the table. For example, let
us again look at the 13 table. The period of zero-appearances being 7
(as we have seen from the basic series) and 3, 5 being the 4th and 5th
terms in the basic series, we know that 0 appears at the (7-3)th term
in a new series (3, 5, 8, 0 ...). Suppose we multiply the new series,
term by term, by such a factor (9) as makes a still newer series with

the first term 1.

We have 3x9, 5x%x9, 8x9, Ox9 --- [13
or 27 , 45, 72, 0--- [13
or 1 3 6, 7, 0 --- [13

Hence from the entry of 4 in square (3, 5) we can check the same en-
try in (1, 6); both must be and are 4.
Here we note an interesting point. Still working with modulus

13, we have the basic series

1, 1, 2, 3, 5, 8, 8, first zero 7

from which we get 1, 2, 3, 5, 8, 0, zero 6
2, 3, 5,8, 0 zero 5

3, 5,8, 0 zero 4

5, 8 zero 3

We have found the entry in the table (first zero) for 3, 5 was the same
as for (1, 6). Similarly we have seen that (1, 2) is simply 1 less than
(1, 1). Again (2, 3) = (14, 21) = (1, 8); and (5, 8)=(40, 64)= (1, 12).
However, this gives us entries in line 1 only for claims 1, 2, 6, 8 and
12, We have no data for the remaining columns, i.e. for series be-

ginning (1, 3) (1, 4) (1, 5) (1, 7) (1, 9) (1, 10) and (1, 11).
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One might at first imagine that these deficiencies were due to the
factthat we had only run our basic series out to the first zero, instead
of continuing beyond this restricted period to the full period, when not
only zero but all remainders 13 repeat: 1, 1, 2, 3, 5, 8, 0, 8, 8, 3,
i1, 1, 12, o, 12, 12, 11, 10, 8, 5, 0, 5, 5, 10, 2, 12, 1, 0. How-
ever, the reader will find that the ﬁew entries in squares (8, 8) (8, 3)
(3, 11) etc. still '"'run back'' to the same set of 5 entries on line 1,
There are no entries on line 1 in columns 3, 4, 5, 7, 9, 10 and
11; because series with first terms 1 and second terms 3, 4, 5, 7, 9,
10 and 11 have no terms divisible by 13! Recall our test, of whether
p could be a factor of a series beginning (1, b, 1 +b), i.e., is

+ b2 - b-1 aresidue of p? It will be found that

:i:(32~3— 1)=5 or 8

:l:(42—4~ 1)=11 or 2

:I:'(52—5— 1) =x19=6 or 7

(72 -7-1)=241=2 or 11
2

+{97 -9-1)=x71=6o0r 7

+ (10‘2 -10-1)=+89=11 or 2
+ (114211 -1)=%109=5 or 8
are none of them residues [13.
Consequently there must be entries of N (for ''never'') in each
of Columns 3, 4, 5, 7, 9, 10 and 11 of Line 1.
TOSUMMARIZE as tothe appearances of p as a factor of terms
in a general series (a, b, a +Db).
If p is prime
(i) Itwillnever appearunless & (b2 - ab - az) is a residue of p.
(ii) If it can appear per (i), and does so, it will reappear at the
same interval as in the basic series,
(iii) Todetermine the place of first appearance there is no sim-
pler method known to the writer than to reduce a and b [p andthen
run the series out to the first zero. However, this can be quite a bit

simpler than running out the series, itself. E.g., what, if any, terms
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are divisible by 19 in the series 119, 231, 350, 581? Note
119=5 [19 231=3 [19
Hence the first 3 terms = 5, 3, 8 and 32 -5.8=-31=112=7, ares-
idue; sothat19is a possible factor, then we have 5, 3, 8, 11, 0. I.e.,
the 5th term 931 is so divisible. Moreover, since the zero period of
the basic series is 18; this is also the period in our given series; and
the 23rd, 4lst and every 18th term thereafter is divisible by 19.

If p iscomposite, the rulesfor zero appearances can be derived
from the rules of its prime factors in a manner easily illustrated by
two examples:

(1) What, if any, terms are divisible by 143 in the series
1, 6, 7, 13 --- ?
Since 143 = 11 x 13 we first check possibility of both primes as factors

62 -6 -1=29=7 [11 and 3 [13

-7T= 4 is a residue of 11; and 3 is a residue of 13.

Hence both primes are possible factors

Moreover, it can easily be found that zero [l1 appears at the
6th term with a period of 10; while zero [13 appears at the 4th term
with a period of 7.

Hence the number n, ofthe first term divisible by 143 must sat-

isfy the congruences.

n=6 [10
and n=4 [13

The minimum solution is 56. Hence the 56th term is the smallest di-
visible as required by 143,

(2) Onthe other hand, there are cases in which, while there may
be terms of a series divisible by each of two (or more) primes, there

may be none divisible by both (or all). Consider

1, 7, 8, 15, 23
As the reader can check, the 4th term and every 5th thereafter is di-
visible by 5; while the 8th term (99) and every 10th thereafter is di-

visible by 11. However, there is no term divisible by 55. This is
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due to the fact that there is no solution to the simultaneous congruences
n=z4 [5 (a number ending in 4 or 9)
nZ= 8 [10 (a number ending in 8)

No number satisfies both conditions.

Thus there is no fixed and simple test for divisibility of a gen-
eral series by a composite number. One mustdetermine for each prime
factor of the composite modulus, (i) the term at which it first appears
and (ii) the period at which it reappears thereafter. Then one must
test the congruences expressing these two conditions for each prime
in the composite modulus; and either solve them or find them to be
insoluble.

To complete this analysis would require attack on the problem of
zero appearances in both the basic and general series for moduli which
are powers of primes, pC. However, this diécussion is postponed
pending publicationofa proof by J. H. E. Cohn that in the basic series
1 UZ and U’_l,.

Beyond this we offer only these Conjectures:

no terms are exact squares, except U

In the basic series

(i) If the kth term 1is the first one divisible by p, then the
choice of first two terms, and will not be greater than the (pc—l)th
term.

(ii) There will be no first appearance, if the first terms are
chosen so that =* (b2 - ba - az) are nonresidues [pC.

(iii) If there is a first appearance, there will be reappearances

at the same period as in the basic series.
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