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1. INTRODUCTION 

In e a r l i e r i s sues of the Quar t e r ly there have been shown and 
proven answer s to the following quest ions about the basic s e r i e s (1, 1, 
2, 3, 5 - - - ) . 

(1) By what p r i m e s a r e the var ious t e r m s , U ., d iv is ib le? 
(2) At what points do var ious p r i m e s f i r s t appear a s f ac to r s? 
(3) At what per iods do they r e a p p e a r ? 

In this paper we deal with answer s to the same quest ions as to 
the genera l s e r i e s (a, b, a + b, a + 2b, 2a + 3b ). 

20 PERIODS OF REAPPEARANCE ARE THE SAME 

Our task is simplified if we answer the last quest ion f irst : 

If k is the per iod at which a p r i m e r epea t s i ts ze ro r e s idues 
in the basic s e r i e s , k is a lso the period of ze ro r e s idues in any 
genera l s e r i e s . 

Suppose that a p r ime f i rs t divides the nth t e r m of a given s e r -
ies (a, b, a + b ) and let the (n- l ) th t e r m be c. Then modulo p, 
(which we herea f te r abbrevia te to M[p") the s e r i e s runs in this neigh-
borhood as c, 0, c, c, 2c, 3c e tc . The t e r m s after the zero a r e 
those of the basic s e r i e s each mult ipl ied by c. Now if x^ io [p, so 
a l so c x i o if c =£ o [p. Again, if x = o [p, so a l so cx= o [p. This 
means that in the two s e r i e s (1, 1, 2, - - - ) and (c, c, 2c ) the 
ze ros appear at the same t e r m s 

3. SUMMARY OF PREVIOUS RESULTS AS TO FIRST APPEARANCES 

(1) There a r e some t e r m s of the basic s e r i e s divisible by any p r ime 
one may choose, 
(2) The t e r m U , . . . i s divis ible by U , U, U . . . E. G. v abc J a b c 

U12 * 144 
is divisible by 

187 



188 

U 
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u 2 = i 
U 3 = 2 
U 4 = 3 
U 6 = 8 

(3) Such a t e r m U ., for which n is composi te , may a lso have 
other fac tors , called "pr imi t ive p r ime d i v i s o r s ; " and the genera l form 
of these p r i m e s is de te rmined by the following ru les (but the i r identity 
mus t be found by t r i a l and e r r o r ) . 

(A) If n is odd; p is of the form 2 kn ± 1 
(B) If n = 2 ( 2 r + l ) ; p is of the form nk .± l 
(C) If n = 2 m (2 r + 1); p is of the form nk/2 - 1 

Examples a r e l is ted in the F e b r u a r y 1963 Quar te r ly at pp. 44-45 . 
(4) The fact that n is p r ime does not imply that U is p r i m e . E . g . , 
U U 19 = 4181 = 37 x 113; even though 19 is p r i m e . However, the con-
v e r s e is t rue : If U. is p r ime , so a lso is n. 

n ^ 
(5) The even p r i m e , 2, is a factor of every th i rd t e r m of the s e r i e s ; 
and the odd p r i m e 5 is a factor of every 5th t e r m . 
(6) All other odd p r i m e s a r e of the forms ± 1 and ± 3 [10. They 
appear and r eappea r as factors according to the following ru les : 

(a) If p= ± 1 [10, it will f i rs t appear when the n of U. = —j—J 

d being some posi t ive integer ; and will r eappear every nth t e r m 
thereaf ter ; 

D 4" 1 

(b) If p5 ± 3 [10, it will f i rs t appear when n = ±--3—, and every 
nth t e r m thereaf te r , d again being some posi t ive in teger . E. g. , 

3 divides U4 and every 4th t e r m thereaf te r 7 
11 
13 
17 
19 

U8 
uio " 
U? M 

U9 " 
U18 " 

" 8 t h 
10th " 

" 7th " 
9th " 
18th " 

(c) The ru les for de termining the divisor , d, of p =fc 1 in (6) 
have not yet been given. Examinat ion of the p r i m e s less than 80 give 
d = 1, 2 or 4 in all c a se s except 47, where it is 3. However, in the 
range from p = 2,000 to 3,000, given in the F e b r u a r y 1963 i s sue at 
pp. 36-40, d has values ranging from 1 to 78. 
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(7) Nothing has thus far been said about the appearances and per iods 
of composi te fac tors , ab (a / b ) , nor fac tors which a r e powers , pC. 

4. NEW ANSWERS TO THE QUESTION OF FIRST APPEARANCES 

(1) "By what factors a r e the t e r m s of the genera l s e r i e s (a, b, a + b, 
a + 2b, + 3b . . . ) d i v i s i b l e ? " 

It can be shown that if A, B and C denote any th ree success ive 
2 t e r m s in this s e r i e s , then B - AC = ± a constant, no m a t t e r which 

th ree t e r m s a r e chosen, and no m a t t e r what the values of A and B 
(the f i r s t two t e r m s ) . 

Specifically, work on the f i rs t few t e r m s of the genera l s e r i e s 
shows what this constant mus t be 

b - a (a + b) = b - ab - a 

or (a + b) 2 - b (a + 2b) = a2+ 2ab + b 2 - ab - ab2 

= - b +• ab + a 

2 2 
= -(b - ab - a ) 

2 How can we make use of this constancy of B AC to de te rmine 
the poss ibi l i ty of a given p r i m e , p, as a factor of some t e r m in the 
genera l s e r i e s ? By changing the equation to a congruence [p. If any 
t e r m , C, of the s e r i e s is divisible by p; then C and i ts two immedia te 
p r e d e c e s s o r s mus t sat isfy the congruence 

B 2 - ACE ± (b2 - ab - a2) [p 

But we a r e a s suming CEO [p. This e l iminates the t e r m - AC. Hence 
2_ 2 2 

we mus t have B - ±. (b - ab - a ) [p. 
In other words , once we know the f i r s t two t e r m s , a and b of 

a genera l s e r i e s ; we know that the only possible factors for t e r m s of 
2 2 

the s e r i e s a r e those for which ± (b - ab - a ) is a quadra t ic r e s idue . 
P r i m e s of which this is not t rue cannot be the modulus in the congruence 

B 2 E ± (b2 - ab - a2) [p.-
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However, it does not folLow from the necess i ty of this condition 

that it is a l so sufficient. E. g. , 1, 4, 5 . . . is never divisible by 89. 
Never the les s , Brother Alfred has shown that the re a r e some p r i m e s 
which a r e fac tors of a l l Fibonaccious s e r i e s . 
(2) We can no longer say that U , is divisible by U , Uv and U , 
as a single example will show. Consider 3, 7, 10, 17, 27, 44, 71 , 
115, 186, 301. U1 Q = 301 is divisible by U2 = 7, but not by IL = 27. 
(3) Neither can we say of a genera l s e r i e s that if U. is p r i m e , so 
too is n. Vide 2, 5, 7, 12, 19, 31 . . . for which U/ is p r i m e but 6 
is not. 
(4) (a) Nor do we have in the genera l s e r i e s a set of p r imi t ive p r i m e 
fac tors , in view of (2) above. 

(b) Thus we a r e fa i r ly l imited, as to ru l e s for the forms of c e r -
tain, poss ible or imposs ib le p r i m e factors of the genera l s e r i e s . We 
make he re only two observa t ions : 

(i) For p r i m e s of the form p = 4k + 3, e i ther a or -a is 
a res idue for any value of a. Hence these p r i m e s a r e poss ib le , but not 
n e c e s s a r i l y ce r t a in fac tors of any genera l s e r i e s . / 

(ii) On the other hand, for p r i m e s of the form p = 4k + 1, 
the re can be values of a for which nei ther a nor -a is a r e s idue . 
E . g . , nei ther 2 or -2 is a res idue [5; and nei ther ±2 nor ±5 nor 
±6 a r e r e s idues [13. Hence these p r i m e s a r e imposs ib le factors of 
genera l s e r i e s for which the ini t ial t e r m s a r e co r r ec t l y chosen. 

E . g . , no t e r m s of the s e r i e s 1, 63, 64, 127 a r e ever divisible by 
5, 11, 13 or 17, since ± (63Z - 64) = ± (3969-64) = ± 3905 i s a non-
res idue of each of these p r i m e s . 

Hence let us put as ide for the moment the m o r e pa r t i cu l a r ru les 
of forms of fac tors of the genera l s e r i e s , and turn to the place of f i r s t 
appearance of poss ib le fac to rs . The in te rva ls of r eappea rance a r e as 
in the basic s e r i e s . 
(5) F i r s t let us review 2 and 5. If any s e r i e s is reduced 2, we have 
only four pa t t e rns , depending on choice of ini t ial t e r m s 

1, 1, 0, 1, 1, 0, 1, 1, 0, . . . . . 
0, 0, 0, 0, 0, 0, 0, 0 . . . . . . 
1, 0, 1, 1, 0, 1, 1, 0 . . . . . . . 
0, 1, 1, 0 
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That is to say: one of the f i rs t th ree t e r m s mus t be even; and t h e r e -
after e i ther al l or every 3rd t e r m is even. 

For 5, the si tuation is a Little m o r e complex,, Actual computa-
tion of f i r s t appea rances for the var ious combinations of r e m a i n d e r s 
of the f i r s t two t e r m s enables us to make the following table: 

If the second t e r m has a r ema inde r of 

0 1 2 3 4 
and the 
f i r s t a 

r ema inde r 
of 

rr" 
2 

f 2 

I 2 

1 2 

1 

5 

N 
4 

3 

1 

4 

5 
3 

N 

1 

N 

3 

5 

4 

. 1 
3 

4 

N 

5 

[5 

the en t r i es show the number of the smal les t t e r m divisible by 5, where 
N signifies nnonee " Thus we see that 5 may f i rs t appear as a factor 
of any t e r m from the 1st to the 5th5 or be suppressed ent i re ly; by 
p rope r choice of f i r s t t e r m s . However, as the r e a d e r can eas i ly v e r -
ify, if 5 appea r s once as a factor, it r e a p p e a r s in eve ry 5th t e r m 
the rea f t e r . 
(6) Now, as before, let us tu rn from these two special ca ses of 2 
(the only even pr ime) and 5 (the only one E 5 [10) and consider the r e -
maining ones of the forms ±1 and .±3 [10., We make the following 
conjec tures : 

(a) By p roper choice of ini t ial t e r m s we c a n m a k e any such p r i m e , 
p, f i rs t appear as a factor of any t e r m whose number (rank)<p; or, if 
p is of the form 4 k + 1, we can suppress it a l toge ther . 

(b) If such a p r ime appea r s at all , it will r eappea r at the same 
in te rva l as in the basic s e r i e s . 

To tes t these conjec tures , let us make tab les , as for 5, for 7 
and 11 . 
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0 1 2 3 4 5 6 

Oct. 

J l ~ 
2 

I J 2 -

12 
2 

[HT~ 
!| 2 

i 

8 

5 
6 

7 
4 

3 

1 

7 
8 

4 

5 

3 

6 

1 

4 

6 

8 

3 

7 

5 

1 

5 

7 

3 

8 

6 

4 

1 

6 

3 

5 
4 

8 

7 

1 | 
3 ' -

4 

7 
6 

5 

8 

Note the absence of N ' s ; since 7 is always a factor of some t e r m s of 
any genera l s e r i e s . 
For 11: b, 

Second t e r m 

10 

0 

1 l 
\\ 2 

2 

j] 2 
| j 2 

I Z 

j | 2 

1 2 
! 2 

J j Y 
2 

1 

1 

10 

6 

N 

5 

7 

9 
N 

8 

4 
3 

2 

1 

9 
10 

N 
6 

8 

N 

4 

5 

3 

7 

3 

1 

5 

8 

10 

7 
4 

6 

9 
3 

N 

N 

4 

N 

9 
4 

10 
5 

N 
3 

6 

7 

8 

5 

4 

N 
7 

N 

10 

3 i 

8 

9 
5 

! 6 
L _ 

6 

6 

5 

9 
8 
3 

10 

N 

7 

N 

4 

7 

8 

7 
6 

3 

N 

5 

10 

4 

9 
N 

8 

1 

N 

N 

3 

9 
6 

4 H 

7 

9 
1 

7 

3 

5 i 
4 

N 
8 

6 ' 

10 1 N 
8 | 10 
5 ] 9 

10 

3 J 
—-j-j 

8 j 
N | 
9 1 

N | 
! 6 1 

10 1 
L _ J 

Observing these th ree tab les , we see the following common fea tures : 
(i) The top line is always a l l l ! s ; 
(ii) The left column is always a l l 2 ' s , except for the top ent ry . 
(iii) One diagonal is a l l 3' s. 
(iv) The other diagonal is a l l k ' s (where k will be seen to be the 

constant of r eappea rance , in this case 10), except for the upper left 
c o r n e r . 

(v) The nth line (except the top) is line 1 "spaced out" at i n t e r -
vals of m from the 3. 

(vi) Hence only line 1 need be computed. 
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Some of the fea tures a r e obvious: 
(i) The top line of l ' s mean only that a (in the s e r i e s a, b, 

a•+ b . . . ) ~ o [p. Hence the f i r s t ze ro is at the f i rs t t e r m , 
(ii) The left column of 2's is s imi l a r ly expl icable . The excep-

tion of 1 at the top left co rne r is because both a and b = o, and the 
e a r l i e r of the two is a, the 1st t e r m . 

(iii) The diagonal of 3rs is due to thei r r ep resen t ing s e r i e s in 
which the f i r s t two t e r m s a r e a, p -a , p. The a ' s vary; but p in the 
3rd t e r m does not. 

(iv) The ident i t ies in the other diagonal r e p r e s e n t genera l s e r i e s 
of which the f i rs t two t e r m s a r e both a (2, 2, 4 „ . . , 3, 3, 6 . . . , 
4, 4, 8 . . . ). The t e r m s of each of these s e r i e s a r e those of the basic 
(1, 1, . . . ) each mult ipl ied by a. Consequently if any t e r m in the basic 
s e r i e s gave a r ema inde r [p it would a lso give a r ema inde r (usually 
different) when mult ipl ied by a constant . On the other hand, if the nth 
t e r m , U. , of the basic s e r i e s = o [p; so a lso a U E o [p. That is to 
say, the e a r l i e s t ze ro r ema inde r in (a, a, 2a . . . ) occur s at the same 
t e r m , r e g a r d l e s s of the value of a. 

(v) The "spacing out" of Line 1 to get the en t r i es in Line n of 
the table is explicable s imi l a r ly . If x = o [p so a lso k x E o [p while 
if x £ o [p so a l so kx ^ o [p9 in the f i rs t case for any value of k, 
and in the second so long as k i o [p. 

This means that the occu r rence of ze ros in any s e r i e s (a, b, 
a + b . . . ) is unchanged if each t e r m in the s e r i e s is mult ipl ied by the 
same constant, k £ o [ p . In other words , while non-ze ro r e m a i n d e r s 
may vary, p will occur as a factor of p r ec i s e ly the same t e r m s in 
s e r i e s (1, 2, 3, 5 . . . ), (2, 4, 6, 10 . . . ), (3, 6, 9, 15 . . . ) e tc . Hence 
the en t r i es in line 1 and col. 2, line 2 and col. 4, line 3 and col. 6 of 
the table mus t be the same; and s imi la r reasoning shows how the r e s t 
of the spacing out follows the same pattern„ 

(vi) Final ly we mus t cons ider line " 1 " of the table . To fill it 
out the ha rd and obvious way r e q u i r e s us to run out, reduced [p, the 
var ious s e r i e s (1, 2, 3, 5 . . . ), (1, 3, 4, 7 . . . ), (1, 4, 5, 9 . . . ) un-
til we r each a ze ro in each; and then make cor responding en t r i e s in 
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line 1. This done, spacing out as per (v) will compLete the table . 

An a l te rna t ive , or a c r o s s - c h e c k can be made as follows: Sup-
pose we run out the basic s e r i e s for a p r i m e we have not yet considered, 
13* The s e r i e s reduced [13 to the f i rs t ze ro is 1, 1, 2, 3, 5, 8, 0. 

Attached is a table par t ia l ly filled in, with the invar iable 1st row 
of l ' s , left column of 2 ' s , diagonal of 3 fs , and diagonal of 7 's (the 
ze ro per iod of the basic s e r i e s ) . There a r e other en t r i e s , which we 
now explain. 

For [13 

Remainder of Second Term (b) 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 5 8 0 marked / / / 
8 8 3 11 1 12 0 " \ \ \ 

12 12 11 10 8 5 0 " ^ ^ 
5 5 10 2 12 1 0 " UN 

The ent ry in (1, 1) is 7; because we have just seen that 7 is the 
z e r o - p e r i o d of the basic s e r i e s . There is s imi l a r ly a 6 in the square 
(1, 2) because after a look at the basic s e r i e s , we see that if we s t a r t 
a n e w s e r i e s with f i r s t t e r m s 1, 2, instead of 1, 1; we a r r i v e at 0 after 
6 t e r m s ins tead of 7. In fact, as the 7 and 11 tables have i l lus t ra ted 
a l ready , the ent ry in square (1, 2) of the table is always k - 1 , where 
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k is the number of the f i rs t ze ro t e r m in the basic s e r i e s . S imi lar ly 
t h e e n t r y i n the square (2, 3) is always k-2; and in the square (3, 5) it 
is k - 3 ; e tc . ; because as we select la ter and la ter p a i r s of t e r m s in the 
basic s e r i e s to s t a r t new s e r i e s , we reduce one by one the number of 
the f i rs t t e r m in which zero a p p e a r s . Hence we can, without fur ther 
computat ion than the basic s e r i e s reduced [p, fill in a number of en-
t r i e s on var ious lines of the ze ro appearance table (see the at tached 
figure for 1 3). 

Moreover , we can use these en t r i e s , with a li t t le m o r e t r i a l and 
e r r o r , to work back to values in line 1 of the table . For example , let 
us again look at the 13 table . The period of z e r o - a p p e a r a n c e s being 7 
(as we have seen from the bas ic se r i e s ) and 3, 5 being the 4th and 5th 
t e r m s in the basic s e r i e s , we know that 0 appea r s at the (7-3)th t e r m 
in a new s e r i e s (3, 5, 8, 0 . . . ), Suppose we mult iply the new s e r i e s , 
t e r m by t e r m , by such a factor (9) as makes a st i l l newer s e r i e s with 
the f i r s t t e r m 1. 

We have 3 x 9, 5 x 9, 8 x 9, Ox 9 - - - [13 
or 27 , 45, 72, 0 - - - [13 
or 1 , 6, 7, 0 - - - [13 

Hence from the ent ry of 4 in square (3, 5) we can check the same en-
t ry in (1, 6); both mus t be and a r e 4. 

Here we note an in te res t ing point. Still working with modulus 
13, we have the basic s e r i e s 

1, 1, 2, 3, 5, 8, 8, f i rs t ze ro 7 
from which we get 1, 2, 3, 5, 8, 0, ze ro 6 

2, 3, 5, 8, 0 ze ro 5 
3, 5, 8, 0 ze ro 4 
5, 8 ze ro 3 

We have found the en t ry in the table (first zero) for 3, 5 was the same 
as for (1, 6). S imi lar ly we have seen that (1, 2) is s imply 1 less than 
(1, 1). Again (2, 3) E (14, 21) 5 (1, 8); and (5, 8) = (40, 64) = (1, 12). 
However, this gives us en t r i e s in line 1 only for c la ims 1, 2, 6, 8 and 
12. We have no data for the remain ing columns, i . e . for s e r i e s be -
ginning (1, 3) (1, 4) (1 , 5) (1, 7) (1, 9) (1, 10) and (1, 11). 
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One might at first imagine that these deficiencies were due to the 

fact that we had only run our basic series out to the first zero, instead 

of continuing beyond this restricted period to the full period, when not 

only zero but all remainders [13 repeat: 1, 1, 2, 3, 5, 8, 0, 8, 8, 3, 

11, 1, 12, 0, 12, 12, 11, 10, 8, 5, 0, 5, 5, 10, 2, 12, 1, 0. How-

ever, the reader will find that the new entries in squares (8, 8) (8, 3) 

(3, 11) etc. still "run back" to the same set of 5 entries on line 10 

There are no entries on line 1 in columns 3, 4, 5, 7, 9, 10 and 

11; because series with first terms 1 and second terms 3, 4, 5, 7, 9, 

10 and 11 have no terms divisible by 13J Recall our test, of whether 

p could be a factor of a series beginning (1, b, 1 + b), i. e. 9 i s 
2 

± b - b ~1 a r e s i d u e of p ? It w i l l be found t h a t 

± ( 3 2 -

± ( 4 2 -

± ( 5 2 -

* ( 7 2 • 

± ( 9 2 -

- 3 -

- 4 -

- 5 -

- 7 -

- 9 -

1) 

1) 

1) 

1) 

1) 

E 5 o r 8 

~11 or 2 

= ± 19= 6 or 7 

= ±.41= 2 or 11 

= ±.71 = 6 or 7 

± (102 - 10 - 1) =±89 = 11 or 2 

± ( l l 2 - 11 - 1) =± 109=5 or 8 

are none of them residues [130 

Consequently there must be entries of N (for "never") in each 

of Columns 3, 4, 5, 7, 9, 10 and 11 of Line 1. 

TO SUMMARIZE as to the appearances of p as a factor of terms 

in a general series (a, b, a *b). 

If p is prime 
2 2 

(i) It will never appear unless =b (b - ab - a ) is a residue of p. 
(ii) If it can appear per (i), and does so, it will reappear at the 

same interval as in the basic series. 

(iii) To determine the place of first appearance there is no sim-
pler method known to the writer than to reduce a and b [p and then 
run the series out to the first zero. However, this can be quite a bit 
simpler than running out the series, itself. E.g., what, if any, terms 
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a r e divisible by 19 in the s e r i e s 119, 231, 350, 581? Note 
119 = 5 [19 231 = 3 [19 
Hence the f i rs t 3 t e r m s = 5, 3, 8 and 3 2 - 5. 8 = -31 = 112 = 7, a r e s -
idue; so that 1 9 is a possible factor, then we have 5, 3, 8, 11, .0. I . e . , 
the 5th t e r m 931 is so divis ible . Moreover , since the ze ro period of 
the basic s e r i e s is 18; this is a lso the period in our given s e r i e s ; and 
the 23rd, 41st and every 18th t e r m thereaf te r is divisible by 19. 

If p is composi te , the ru les for ze ro appea rances can be der ived 
from the ru les of i ts p r i m e factors in a manner eas i ly i l lus t ra ted by 
two examples : 

(1) What, if any, t e r m s a r e divisible by 143 in the s e r i e s 

1, 6, 7, 13 - - - ? 

Since 143 = 11 x 1 3 we f i rs t check poss ibi l i ty of both p r i m e s as fac tors 

62 - 6 - 1 = 29 ~7 [11 and 3 [13 
-7= 4 is a res idue of 11; and 3 is a res idue of 13. 

Hence both p r i m e s a r e poss ib le fac tors 
Moreover , it can eas i ly be found that ze ro [l 1 appea r s at the 

6th t e r m with a per iod of 10; while ze ro [13 appea r s at the 4th t e r m 
with a per iod of 7. 

Hence the number n, of the f i rs t t e r m divisible by 143 mus t sa t -
isfy the congruences . 

n ^ 6 [10 
and n = 4 [l 3 

The min imum solution is 56. Hence the 56th t e r m is the smal les t d i -
visible as r equ i red by 143. 

(2) On the other hand, the re a r e cases in which, while the re may 
be t e r m s of a s e r i e s divisible by each of two (or more ) p r i m e s , t he re 
may be none divisible by both (or al l) . Consider 

1, 7, 8, 15, 23 
As the r e a d e r can check, the 4th t e r m and every 5th thereaf te r is d i -
visible by 5; while the 8th t e r m (99) and every 10th thereaf te r i s d i -
visible by 11 . However, the re is no t e r m divisible by 55. This is 
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due to the fact that the re is no solution to the s imultaneous congruences 

n = 4 [5 (a number ending in 4 or 9) 

n E 8 [ 10 (a number ending in 8) 

No number sat isf ies both condit ions. 
Thus the re is no fixed and s imple t e s t for divisibi l i ty of a gen-

e r a l s e r i e s by a composi te number . One mus t de te rmine for each p r i m e 
factor of the composi te modulus , (i) the t e r m at which it f i r s t appea r s 
and (ii) the per iod at which it r e a p p e a r s thereaf te r . Then one mus t 
t e s t the congruences express ing these two conditions for each p r ime 
in the composi te modulus; and ei ther solve them or find them to be 
insoluble . 

To complete this analys is would r equ i r e a t tack on the problem of 
ze ro appearances in both the basic and genera l s e r i e s for moduli which 

c a r e powers of p r i m e s , p . However, this d i scuss ion is postponed 
pending publication of a proof by J. H. E„ Cohn that in the basic s e r i e s 
no t e r m s a r e exact squa re s , except U. , UT and U'^. 

Beyond this we offer only these Conjectures : 
In the bas ic s e r i e s 
(i) If the k t e r m is the f i r s t one divisible by p, then the 

c-1 choice of f i r s t two t e r m s , and will not be g rea t e r than the (p )th 
t e r m . 

(ii) There will be no f i rs t appearance , if the f i r s t t e r m s a r e 
2 2 c 

chosen so that ± (b - ba - a ) a r e nonres idues [p . 
(iii) If the re is a f i rs t appearance , the re will be r eappea rances 

at the same per iod as in the basic s e r i e s . 
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