ON IDENTITIES INVOLVING FIBONACCI NUMBERS
V. C. HARRIS

San Diego State College, San Diego, California
Rather extensive lists of identities involving Fibonacci numbers
have been given by K. Subba Rao [1] and by David Zeitlin [2]. Addi-
tional identities are presented here, with the feature that summation
by parts has beenused for effecting the proofs (except for identity 23),
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The well-known method of summation byparts is established from

the identity

Of course, a suitable choice of uy and A Vi is essential just as it is

in integration by parts. In order to find vy from A vy results in [1]
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and [2] have been used when needed. Also, any constant term in Vi
can be omitted in the two terms of the right member.
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To prove (3) and (4), together, write in (3) U = (-1)k and
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Solving gives the results.
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To obtain (5) let uy = k and then Vi ka-l' This gives
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The others are proved similarly, except that (23) was obtained
from (21) and (22). Note that the same method could be used to extend

the results.
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