CONCERNING THE EUCLIDEAN ALGORITHM

 ${\sf R.\ P.\ KELISKY} \\ {\sf IBM\ Watson\ Research\ Center,\ Yorktown\ Heights,\ New\ York} \\$

In most discussions of the integer solutions of the equation

(1)
$$ax + by = 1$$
, $(a, b) = 1$,

reference is made to the fact that an integer solution of (1) may be obtained by using the Euclidean algorithm. With the restriction that a > b > 1 we shall show that in the x-y plane the solution of (1) obtained by the Euclidean algorithm is the lattice point on the line (1) which is nearest the origin. This is probably not a new result, but we cannot find a reference to it in the literature. Dickson [1, pp. 41-52] gives other algorithms for solving (1) for which it is known that the algorithm yields the lattice point on (1) which is nearest the origin.

Suppose a > b, (a, b) = 1, and $a \not\equiv 1 \pmod{b}$ and consider the Euclidean algorithm applied to the integers a and b. One obtains the well-known sequence of equations:

with $r_n = 1$. The requirement that $a \not\equiv 1 \pmod{b}$ is equivalent to $r_1 > 1$, and hence the Euclidean algorithm will require at least a second step. Hence $n \ge 2$ and $r_{n-1} \ge 2$.

To obtain a solution of (1) one then derives the following sequence of equations in which, for notational convenience, $a = r_{-1}$ and $b = r_0$:

The P_i and Q_i are polynomials in the q_i and the solution (P_n, Q_n) will be called the Euclidean algorithm solution of (1). It is determined uniquely by the algorithm described by the equations (2) and (3).

Lemma 1:
$$\left|P_{n}\right| < \frac{1}{2} b \text{ and } \left|Q_{n}\right| < \frac{1}{2} a$$
.

We first prove by induction

$$|P_{i}| \leq \frac{1}{2} r_{n-i}$$

and

(5)
$$|Q_i| < \frac{1}{2} r_{n-i-1}$$
 for $i = 1, ..., n$,

with equality possible in (4) only if i = 1. We have

$$1 = P_{i} r_{n-i-1} + Q_{i} r_{n-i}$$

and since

$$r_{n-i-2} = r_{n-i-1} q_{n-i} + r_{n-i}$$

it follows that

$$1 = Q_i r_{n-i-2} + (P_i - q_{n-i}Q_i)r_{n-i-1}$$

and we have the recurrence relations

$$P_{i+1} = Q_i$$

and

$$Q_{i+1} = P_i - q_{n-i}Q_i$$

with P_1 = 1 and Q_1 = $-q_n$. To prove that $|P_1|$ = 1 $\leq \frac{1}{2} r_{n-1}$ recall that $r_{n-1} \geq 2$. Similarly,

$$|Q_1| = q_n = \left\lceil \frac{r_{n-2}}{r_{n-1}} \right\rceil < \frac{r_{n-2}}{r_{n-1}} < \frac{1}{2} r_{n-2}$$
,

From (6) it follows that $\left|P_{2}\right| < \frac{1}{2} r_{n-2}$, and from (7) $\left|Q_{2}\right| < \frac{1}{2} r_{n-3}$ since

$$\begin{aligned} \left| \mathbf{Q}_{2} \right| &= \left| \mathbf{P}_{1} - \mathbf{q}_{n-1} \mathbf{Q}_{1} \right| \leq \left| \mathbf{P}_{1} \right| + \mathbf{q}_{n-1} \left| \mathbf{Q}_{1} \right| \\ &< \frac{1}{2} \mathbf{r}_{n-1} + \mathbf{q}_{n-1} \cdot \frac{1}{2} \cdot \mathbf{r}_{n-2} \\ &= \frac{1}{2} \mathbf{r}_{n-3} \cdot \end{aligned}$$

Now suppose that

$$\left| \mathbf{P}_{\mathbf{k}} \right| < \frac{1}{2} \mathbf{r}_{\mathbf{n-k}}$$
 and $\left| \mathbf{Q}_{\mathbf{k}} \right| < \frac{1}{2} \mathbf{r}_{\mathbf{n-k-l}}$

for k = 2, ..., i. Then from (6)

$$|P_{k+1}| = |Q_k| < \frac{1}{2} r_{n-k-1}$$
,

and

$$\begin{split} \left| \mathbf{Q}_{k+1} \right| &= \left| \mathbf{P}_{k} - \mathbf{q}_{n-k} \mathbf{Q}_{k} \right| \leq \left| \mathbf{P}_{k} \right| + \mathbf{q}_{n-k} \left| \mathbf{Q}_{k} \right| \\ &< \frac{1}{2} \, \mathbf{r}_{n-k} + \mathbf{q}_{n-k} \, (\frac{1}{2} \, \mathbf{r}_{n-k-1}) \\ &= \frac{1}{2} \, \mathbf{r}_{n-k-2} \quad . \end{split}$$

This completes the induction. Since $r_{-1} = a$ and $r_0 = b$, we have proved the lemma if we take i = n in (4) and (5).

It seems intuitively clear that there cannot be two lattice points on (1) which are equidistant from the origin if $a \neq b$. The proof of this is straightforward but for completeness we give it here.

Lemma 2: If a > b > 0 and (a, b) = 1, there do not exist two distinct lattice points on ax + by = 1 which are equidistant from the origin.

Proof: Suppose (a, β) and (ξ, η) are distinct lattice points on the given line which are equidistant from the origin. Then

(8)
$$\alpha^2 + \beta^2 = \xi^2 + \eta^2$$

and $a\alpha + b\beta = a\xi + b\eta = 1$. We solve for β in terms of α , η in terms of ξ , and substitute these in (8) to obtain

(9)
$$(\alpha^2 - \xi^2)b^2 = 2a(\alpha - \xi) - a^2(\alpha^2 - \xi^2).$$

Since $\alpha \neq \xi$ by hypothesis,

(10)
$$(a + \xi)b^2 = 2a - a^2(a + \xi).$$

But this implies that $a \mid (a + \xi)$ since (a, b) = 1, and also that $(a + \xi) \mid 2a$. Hence, $a + \xi = \pm a$, or $a + \xi = \pm 2a$. If $a + \xi = \pm a$, then (10) implies the Diophantine equation $a^2 + b^2 = \pm 2$ which is impossible if $a \neq b$. If $a + \xi = \pm 2a$, then $a^2 + b^2 = \pm 1$. Clearly there is no solution to this equation such that a > b > 0 and (a, b) = 1.

It is well known that if (x_0, y_0) is any lattice point on (1) then all of the lattice points on (1) are given by the equations

$$x = x_0 - bt$$

$$y = y_0 + at$$

where t runs over the set of all integers. We can now prove our

Theorem. If a > b > 1 and (a, b) = 1 then the Euclidean algorithm solution of (1) is the lattice point on (1) which is nearest the origin.

Proof. First suppose that a \$\pm\$ 1 (mod b). Denote the Euclidean algorithm solution of (1) by (P_n,Q_n) . Clearly the set, S, of positive integers $(P_n-bt)^2+(Q_n+at)^2$ has a smallest member. If $P_n^2+Q_n^2$ is not the smallest number in S then there exists an integer $t \neq 0$ such that

$$P_n^2 + Q_n^2 > (P_n - bt)^2 + (Q_n + at)^2$$

or

$$0 < (a^2 + b^2) |t| < 2 |P_n b - Q_n a|.$$

But from the lemma we have

$$0 < (a^2 + b^2) |t| \le 2(|P_n| b + |Q_n|a) < a^2 + b^2.$$

This is impossible; hence t = 0 and (P_n, Q_n) is the smallest number in S.

The only remaining case is if $a \equiv 1 \pmod{b}$ and a > b > 1. Here the Euclidean algorithm is complete in one step and $P_1 = 1$ and $Q_1 = -q_1 = -(a-1)/b$. The expression $S(t) = (P_1 - bt)^2 + (O_1 + at)^2$ can be rewritten

$$c \left[t - \frac{c-a}{bc}\right]^2 + \frac{1}{b^2}$$

where $c = a^2 + b^2$. Now S(t) is a minimum for t=t*=(c-a)/bc, but b > 1 and c > a imply that c(b-1) + a > 0, or 0 < t* < 1. Therefore, the integer t for which S(t) is a minimum is either 0 or 1. It is easy to show that S(1) > S(0) if (c-a)/bc < 1/2. But

$$\frac{c-a}{bc} < \frac{1}{b}$$
 and $b \ge 1$;

hence (P_1, Q_1) is the point on ax + by = 1 which is nearest the origin. This completes the proof of the theorem.

It is an easy consequence of this theorem that if a and b are consecutive Fibonacci numbers, a > b > 1, then the lattice point P on the line ax + by = 1 which is nearest the origin has Fibonacci coordinates. In fact, if $a = F_{m+1}$, then P is $(F_{n-1}, -F_n)$ where n is the greatest even integer not exceeding m. This follows readily from the identity

$$F_{m+1} F_{n-1} - F_m F_n = (-1)^n F_{m-n+1}$$

REFERENCES

1. Dickson, L. E., "History of the Theory of Numbers," Vol. 2, Chelsea, New York (1952).