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In most discussions of the integer solutions of the equation
(1) ax +by=1, (a,b)=1,

reference is made to the fact that an integer solution of (1) may be ob-
tained by using the Euclidean algorithm. With the restriction that
a > b >1 we shall show that in the x-y plane the solution of (1) ob-
tained by the Euclideanalgorithm is the lattice point on the line (1) which
is nearest the origin. This is probably not a new result, but we cannot
find a reference to it in the literature. -Dickson [l, pp. 41-52] gives
other algorithms for solving (1) for which itis known that the algorithm
yields the lattice point on (1) which is nearest the origin.

Suppose a > b, (a, b) =1, and a#_ 1 (mod b) and consider the
Euclidean algorithm appliedto the integers a and b. One obtains the

well-known sequence of equations:

= <
a b q + s 1< T b
= <
b r, a4, + T 1 r, < ¥y
= < <
r r, d3 + T, 1 T, r,
Tn-3 7 Tn-2 9n-1 * Tn-1’ 1< Th-1 <Tno2
n-2 7 Tn-1 9n * Tn

with ro = 1. The requirement that a # 1 (mod b) is equivalent to
T > 1, and hence the Euclidean algorithm will require at least a sec-
ond step. Hence n 2 2 and LI 2 2,

To obtain a solution of (1) one then derives the following sequence

of equations in which, for notational convenience, a = r 1 and b= ro:
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() = PiThan Ty

n -1 n 0

The Pi and Qi are polynomials in the q; and the solution (Pn, Qn)
will be called the Euclidean algorithm solution of (1). Itis determined

uniquely by the algorithm described by the equations (2) and (3).

1 1
Lemma 1: anl<2-b and Iin <za .
Proof: We first prove by induction
<!
(4) Ipil= Z "n-i
and
(5) la.| <1 for i=1,...,n
i 2 "n-i-1 ’ T

with equality possible in (4) only if i = 1. We have

+Q. r .,

l=P.r .
i "n-i-1 i n-i

and since

. = . .+ .
n-i-2 Tn-i-1 9n-i * Tn-i

it follows that

L= Qr 2ot (Bp-a, s 5

and we have the recurrence relations
(6) P. = Q.

and
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(7) 0. = P.-q_ .Q

i+l i n-i i

. _ - . < 1
with P1 1 and Ql =-q. To prove that 'Pl l =13 7T 1 recall

that T 2 2. Similarly,

1
T
IQl, =4y v [ n_2J< rn-Z < ; Th-2 7
n-1 n-1
From (6) it follows that ’le < -;— T and from (7) IQZ] < %—rn_?’
since
IQz’ = IP]_ - qn-lQll é Ipl’ +qn_1 IQI ’
1 1,
<zttt 77 Tao2
1
= 72 %n-3
Now suppose that
1
Pl <zr g and o] < 5 T k-1
for k=2,...,i. Then from (6)
1
ka+1’ - lel S ZThk-1
and
Qe = 1P - a0 L € TPl o
1 1
< Z Tn-k * 9n-x (7 rn—k—l)
1
= Z "n-k-2

This completes the induction. Since r,=a and ry = b, we have
proved the lemma if we take i =n in (4)and (5).

It seems intuitively clear that there cannot be two lattice points
on(l)which are equidistant from the origin if a # b. The proof of this

is straightforward but for completeness we give it here.
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Lemma 2: If a>b>0 and (a,b) =1, there do not exist two dis-
tinct lattice pointson ax + by = 1 whichare equidistant from the origin.
Proof: Suppose (a, B) and (£,M) are distinct lattice points

on the given line which are equidistant from the origin. Then
(8) R

and aa + bp = af +by=1. Wesolvefor P intermsof a, 7 in terms

of &, and substitute these in (8) to obtain

(9) (@ - £%4b% = 2a(a - €) - a%(a” - £9).

Since a # & by hypothesis,

(10) (@ + £)b% = 2a - a%(a + &).

But this implies that a I(a + 'f) since (a, b) = 1, andalsothat(a + £) IZa.
Hence, a+ £=+a, or a+ & =x2a. If a+ £ =+a, then (10) implies
the Diophantine equation a2 + bZ = + 2 which is impossible if a # b.
If o+ & =+2a, then a2 + b2 =+ 1. Clearly there is no solution to
this equation such that a >~b>0 and (a,b) = 1.

Itis well known thatif (xo, yo) is any lattice point on (1) then all

of the lattice points on (1) are given by the equations

x = x, - bt

0
y:yo+at

where t runs over the set of all integers. We can now prove our

Theorem. If a>b>1 and (a,b) =1 then the Euclidean al-
gorithm solution of (1) is the lattice point on (1) which is nearest the
origin.

Proof. First suppose that a i 1 (mod b). Denote the Euclidean
algorithm solution of (1) by (Pn, Qn)' Clearly the set, S, of positive
integers (Pn - bt)2 + (Qn + at)2 has a smallest member. If Pi + Qi
isnot the smallest numberin S thenthere existsaninteger t# 0 such

that

2 2 2 2
PC+Q°> (P - bt)" +(Q_ +at)
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or
0< (2% +b%) |t] <2|P b-0q al.
n n
But from the lemma we have

o< %) Jt] s2(p_ | b+l o)< a® + b

This is impossible; hence t=0 and (Pn, Qn) is the smallest number

in S.
The only remainingcaseisif a = 1 (mod b) and a> b> 1. Here
the Euclidean algorithm is complete in one step and P‘1 =1 and
Ql =-q = - (a - 1)/b. The expression S(t) = (P1 - bt)Z + (O1 + at)2
can be rewritten
c-a z 1
clt - —b—c—l + 1;7

where c¢ = a.2 + bz. Now S(t) is a minimum for t=t¥=(c-a)/bc, but
b >1 and ¢c> a imply that c¢(b-1)+a >0, or 0< t¥ <1, There-
fore, the integer t for which S(t) is a minimum is either 0 or 1.
It is easy to show that S(1)> S(0) if (c-a)/bc < 1/2. But '

| 0
1
w
A
p—
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o
en
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—

b
hence (Pl’ Ql) is the pointon ax + by = 1 whichis nearest the origin.
This completes the proof of the theorem.

It is an easy consequence of this theorem that if a and b are
consecutive Fibonaccinumbers, a > b > 1, then the lattice point P on
the line ax + by = 1 which is nearest the origin has Fibonacci coordi-
then P is (F

nates., In fact, if a=F - Fn) where n is

m+l’ n-1’
the greatest even integer not exceeding m. This follows readily from

the identity

_ n
En+ Fn—l - Fan = (-1) Fm-n+1'
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