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In m o s t d i scuss ions of the in teger solutions of the equation 

(1) ax + by = 1, (a, b) = 1, 

r e fe rence is made to the fact that an in teger solution of (1) may be ob-
tained by using the Eucl idean a lgor i thm. With the r e s t r i c t i on that 
a > b > 1 we shal l show that in the x - y plane the solution of (1) ob-
tained by the Eucl idean a lgor i thm is the la t t ice point on the line (1) which 
is n e a r e s t the origin. This is probably not a new resu l t , but we cannot 
find a re fe rence to it in the l i terature, , Dickson [l, pp. 41-521 gives 
other a lgor i thms for solving (!) for which it is known that the a lgor i thm 
yields the la t t ice point on (1) which is n e a r e s t the origin. 

Suppose a > b, (a, b) = 1, and a ^ 1 (mod b) and cons ider the 
Eucl idean a lgor i thm applied to the in tegers a and b. One obtains the 
well-known sequence of equations: 

a = b 

r l = r 2 

r , < r 9 n -1 n-2 

r = r q + r 
n-2 n-1 n n 

with r = 1. The r equ i r emen t that a ^ 1 (mod b) is equivalent to 
r > 1, and hence the Eucl idean a lgor i thm will r equ i re at leas t a s e c -
ond stepo Hence n ^ 2 and r . > 2„ 

^ n-1 ~ 
To obtain a solution of (1) one then de r ives the following sequence 

of equations in which, for notational convenience, a = r , and b = r • 

l l 

^2 

q 3 

+ V 

+ r2 , 

+ Ty 

1 < r1 < b 

1 < r 2 < r x 

1 < r < r 
3 2 

L n - 3 n - 2 ^ n - 1 n - 1 

219 



220 CONCERNING THE EUCLIDEAN ALGORITHM Oct. 

1 = r ~ r ~ - q r 1 
n n-Z n n-1 

- q r Q + ( l + q q ^ r •̂n n -3 ^n ^ n - 1 ' n-2 

(3) = P . r . . + Q. r . 
1 n - i - 1 l n - i 

= P r . + Q r n . 
n - 1 n 0 

The P . and Q. a r e polynomials in the q. and the solution (P , Q ) 
l l • r J n n n 

will be called the Eucl idean a lgor i thm solution of (1)0 It is de te rmined 
uniquely by the a lgor i thm desc r ibed by the equations (2) and (3). 

Lemma 1: | p I < 4 b and | Q I < I a . 
1 n ' 2 ' n ' 2 

Proof: We f i r s t prove by induction 

(4) |p. | < I r . 2 n - i 
and 

(5) | Q . | < 2 r
n _ i - l f o r i = l - . - n , 

with equali ty poss ib le in (4) only if i = 1. We have 

1 = P . r . . + Q. r 
I n - i - 1 l n - i 

and since 

r . 0 = r • n q . + r n - i - 2 n - i -1 ^n- i n- i 

it follows that 

1 = Q. r . 9 + (P. - q .Q.)r . 1 I n - i - 2 x I ^n- i r n - i - 1 

and we have the r e c u r r e n c e re la t ions 

(6) P . + 1 = Q. 

and 
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(7) Q = P. - q .Q. 
l + l l ^ n - i i 

with P. = 1 and Q_ = -q . To prove that | p . I = 1 % i- r , rec 
1 1 ^n ^ ' 1 ' 2 n-1 

a l l 
that r , > 2. Similarly, 

Q , 
'n-2 

V i 

. n-2 ^ 1 < < r r , 2 n-2 n-1 

From (6) it follows that |p | < I r ' , and from (7) |Q | < I r 

since 

Q , 

2 n-2' 

P , - < L . , Q , I > |Pi I +q. 

2 n-3 

1 H n- l~ l n-1 lQl 

< ^ - r n + q , • •«• * r 0 2 n-1 ^n-1 2 n-2 

2 rn-3 

Now suppose that 

l p k l < 2 r n - k a n d l Q k l < 7 r n - k - l 

for k = 2, . . . . , i. Then from (6) 

|p, ' ' 

and 

k+1 

Q k+1 

Q k l < 7 r n - k . l ' 

< | p k ~ V - k Q k l = l p k l + V k l Q
k l 

< i r 2 xn-k + qn-k(Zrn-k-l) 

2 rn-k-2 # 

This completes the induction. Since r , = a and r0 = b, we have 

proved the lemma if we take i = n in (4) and (5). 

It seems intuitively clear that there cannot be two lattice points 

on (1) which are equidistant from the origin if a / b. The proof of this 

is straightforward but for completeness we give it here. 
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Lemma 2: If a > b > 0 and (a, b) = 1, the re do not exist two d i s -
tinct lat t ice points on ax + by = 1 which a r e equidistant from the origin. 

Proof: Suppose (a, (3) and (<f, */) a r e dist inct lat t ice points 
on the given line which a r e equidistant from the origin. Then 

(8) a2 + p2 = f2 + 1Z 

and act + bp = a f + b*7 = 1. We solve for p in t e r m s of a, r\ in t e r m s 
of £, and substi tute these in (8) to obtain 

(9) (a2 - f 2 ) b 2 = 2a(a - f ) - a 2 ( a 2 - £ 2 ) . 

Since a / f by hypothesis , 

(10) (a + £)b 2 = 2a - a 2 ( a + f ) . 

But this impl ies that a | ( a + f ) s i n c e (a, b) = 1, and a lso that (a + f ) )2a. 
Hence, a + <f = ± a, or a + <f = ± 2a. If a + <jf = ± a, then (10) impl ies 

2 2 
the Diophantine equation a + b = ± 2 which is imposs ib le if a / b. 
If a + £ = ± 2a, then a + b = ± 1. Clear ly the re is no solution to 
this equation such that a ^ b ^ 0 and (a, b) = 1. 

It is well known that if (x , yn) is any lat t ice point on (1) then all 
of the lat t ice points on (1) a r e given by the equations 

x = x n - bt 

y = y0
 + a t 

where t runs over the set of al l i n t ege r s . We can now prove our 
Theorem. If a > b > 1 and (a, b) = 1 then the Euclidean a l -

gori thm solution of (1) is the lat t ice point on (1) which is n e a r e s t the 
or igin. 

Proof. F i r s t suppose that a ^ l (mod b). Denote the Eucl idean 
a lgor i thm solution of (1) by (P , Q ). Clear ly the set, S, of posit ive 

2 o11 n 2 2 in tegers (P - bt) + (Q + at)^ has a sma l l e s t m e m b e r . If P + Q & x n x n n n 
is not the sma l l e s t number in S then there exis ts an in teger t ^ 0 such 
that 

P 2 + Q 2 > (P - bt) 2 + (Q + a t ) 2 
n n n n 
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or 

0< (aZ + b2) Itl < 2 |p b - Q a l . 
1 ' J n n j 

But from the lemma we have 

0 < (a2+b2) | t | < 2( |p | b + |Q |a)< a2 + b2. 
j j — i n j ' n' 

This is impossible; hence t = 0 and (P , Q ) is the smallest number 
n n 

in S. 
The only remaining case is if a= 1 (mod b) and a> b ^ 1. Here 

the Euclidean algorithm is complete in one step and P. = 1 and 

Q, = - q, = - (a - l) /b. The expression S(t) = (P, - bt)2 + (Q + at) 2 

can be rewritten 
2 . ,- c-a | , 1 

c l t - I F 1 +7i 
b 

2 2 
where c = a + b . Now S(t) is a minimum for t=t*=(c-a)/bc, but 
b > 1 and ĉ » a imply that c(b-l) + a > 0, or 0 < t- <: 10 There-

fore, the integer t for which S(t) is a minimum is either 0 or 1. 

It is easy to show that S(l) > S(0) if (c-a)/bc < 1/2. But 

— < I and b > 1; be b 

hence (P, , Q, ) is the point on ax + by = 1 whichis nearest the origin. 

This completes the proof of the theorem. 

It is an easy consequence of this theorem that if a and b are 

consecutive Fibonacci numbers, a > b > 1, then the Lattice point P on 

the Line ax + by = 1 which is nearest the origin has Fibonacci coordi-

nates. In fact, if a = F . , , then P is (F , , - F ) where n is 
m+1 n-1 li-

the greatest even integer not exceeding m. This foLlows readily from 
the identity 

F , , F . - F F = (-l)nF ... 
m+1 n-1 m n m-n+1 
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