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PROBLEMS PROPOSED IN THIS ISSUE

H-462 Proposed by Ioan Sadoveanuv, Ellensburg, WA

Let G(x) = xk + a1k~ + ... + a; be a polynomial with ¢ a root of order p.
1f G(P(x) denotes the pth derivative of G(x), show that {nPec" " P/G(P)(c)} is a
solution of the recurrence y, = cnk - A Uy-1 — AoUy-9 = +++ = Qply_g-

H-463 Proposed by Paul Bruckman, Edmonds, WA

Establish the identity

hd a" 31+ 3+ 22)

and ® is the Euler (totient) function.

As special cases of (1), obtain the following identities:

2 3 0@/ Fapy = V5/DF, s = 1s 3, 5, .y

(3) 2 0(2n = 1)/Ligp-1ys = FsV/5/L%, s =1, 3, 5, ...;
n=1

(4) n§1¢(n)/Fns = (L, + 1)/F2/5, s = 2, 4, 6, ...;

(5) S Do) /F,, = (L - 1)/F2/5, s = 2, 4, 6, ...
n=1
- 1/F2/5, s = 1, 3, 5, ;

(6) > (-Drtle2n) /Fy,, =
n=1 @/L%, s =2, 4, 6, ’

(7) }:l(—l)”'1®(2n - ) /Fpu-1s = Ly/FE/5, s = 1, 3, 5, ;
n=

(8) Zl (-7 Ye(2n - 1)/Lion-1), = F,V/5/L%, s = 2, 4, 6,
n=
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H-464 Proposed by H.-J. Seiffert, Berlin, Germany

Show that
[n/2]
%)
A -2 = F 5
kgo (k n k n
where

4; = (-1)lG+2 /8] - ((_1)[j/51 + (_1)[<j+u>/51)/2,

[ ] denotes the greatest integer function.

H-465 Proposed by Richard André-Jeannin, Tunisia

Let p be a prime number, and let ry, Iy, ..., ¥y be mnatural integers
that s > 2, r; < p, and
k=s
> kr, = p.
k=1 x
Show that the number
5 1 (ry + vy + «-- + r,)!
PpsPoseeesTy 0 pr 4 Py 4 el + r, rilryl .0 rg!
is an integer.
SOLUTIONS

An Odd Problem

~ H-442 Proposed by Piero Filipponi, Rome, Italy
(Vol. 28, no. 2, May 1990)

Prove that the congruence
(d-3)/2 { 1 (mod d) if (d + 1)/2 is even

(22 + 1)? =
i[]l -1 (mod d) if (d + 1)/2 is odd
holds if and only if d is an odd prime.

Solution by the proposer

Let n be an even integer. The equality
(n-2)/2
(l) nl = o7 J]O [n(n + 2) - 42(2 + 1)]
{ i=

can be proved readily by writing n = 2m and rewriting (1) as

- 1 m m=l . .
@m0t = —= [l lemGm + 1) - 422 + D] = [T m-2Dm+ 72+ 1).
27 =0 i=0
“ Let d be an odd integer. By (l) we have
v 1 (d-3)/2
(2) d-1t=—— I [d? - 1-4i(Z+ D].
' 2471 ;0

If d is a prime, by using Fermat's little theorem, we obtain the congruence

1992]
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(d-3)/2 d=-3)/2
(3) d-1r= Il -1-4i2-42) = [l [-22 + 1D?] (mod d).
i=0 =0

By using Wilson's theorem, ((d - 1)! = -1 (mod d) iff d is prime); thus, by (3)
we get

d-3)/2 (d-3)/2

[T -+ 1)2] = -D@V2 [T 27+ 1)2 = -1 (mod d)
=0 =1

iff d is prime, that is,

(d-3)/2
I @i+ 12 = (—1)(d+1)/2 (mod d) iff d is prime.

i=1
Also solved by P. Bruckman, R. Hendel, and L. Somer.

Another Odd One

H-443 Proposed by Richard André-Jeannin, Tunisia
(Vol. 28, no. 3, August 1990)

Let us consider the recurrence

w, = mwn_l + wn_z,

where m > 0 is an integer and U, , V, the solutions defined by
Uy=0,U, =15 Vy=2,V =m.
Show that, if g is an odd divisor of m2 + 1, then

Vg =m (mod q).
Solution by H.-J. Seiffert, Berlin, Germany

First, we prove that

(1) Ve = m*Vy 3 (mod @), k=0, ..., [q/3],

where [ ] denotes the greatest integer function.
Obviously, (1) is true for kK = 0. Assuming that it holds for k, where

0 <k < [q/3],
we obtain

Vg = mkVg-g = mk(mVy-3-1 + Vg-3x-2)

mk(mz + 1)Vq-3k-2 + mk+1Vq_3k-3
= mk+lvq—3(k+1) (mod q) .
This completes the induction proof of (1).

For any odd prime divisor p of g, the congruence m? = -1 (mod p) shows that
-1 is a quadratic residue mod p; hence (see T. M. Apostol, Introduction to
Analytic Number Theory, Springer-Verlag, 1976, Theorem 9.4, p. 181), p = 1 (mod
4). This holds for any odd prime divisor p of g. Since q is odd, we also have
q =1 (mod 4). 1In (1), we take k = [g/3]. Hence, we have 0 < q - 3k < 2. The
case g = 3k would imply m?2 = -1 (mod 3), which contradicts Fermat's little
theorem. If g = 3k + 1, then ¢ = 1 (mod 4) implies that k is divisible by 4.
From m? = - 1 (mod g) and (1), we get

Vg = mkvl =mk*tl = (-1D*2;m = m  (mod q) .
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If g = 3k + 2, then q odd and ¢ = 1 (mod 4) yield k
(mod ¢) and (1) give

=1 (mod 4). Now m2 = -1

Vg = mkV, = mk(m? + 2) = mk(m? + 1) + mk = mk

DK =D2m = m (mod q) -

i

This completes the solution. Finally, it should be noted that (1) also follows
from the identity

k=1 .,
Vg = (m® + 1) 3 mIVg 355 + mVg_ 5,
J=0
valid for k¥ =0, ..., [q/3].
Also solved by P. Bruckman, F. Howard, L. Somer, and the proposer.

Summing It Up

H-444 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 28, no. 3, August 1990)

Show that, for » = 0, 1, 2,

° >

b2 2k+2)/5] (N
F?’l = Z (_1)[(71' 2 ](k>y
k=0 ‘
(5,n=-2k) =1

where (r, 8) denotes the greatest common divisor of » and s and [ ] the greatest
integer function.

Solution by Paul Bruckman, Edmonds, WA

We employ a generating function technique to prove what appears to be a
very remarkable identity. Define

2]

1
_ _ [3(71-2}(4'2)] n _
(1) G, = EO (-1) (7), n=0. 1.2, ..o
(5,n-2k) =1
and
2) gl@ = ¥ Gz
n=20

Then (formally, at least),

©

g(x) = Z (—l)[%(n”)] xn+2k(7l ZZk)_

Now (Z;];):Ol |

o 2k = + 2k\(2k + k o (n+ 1)og ok
D e R N (e L0 VA G B L Y e sl 2

-3 (%(n N l)>k <%(” " 2)>k _(QQa) 2k

‘k;) (n+ Dy k!

n+l n+2
= zFl[ 2 > 2 Ax%}
n+ 1
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(the "standard" hypergeometric function). Hence,
yperg

© 1 n+1l n+2
(3) gx) = 2 Odﬂ“+ﬂxmzﬁ[ 2 2 ;%%.

n=0
(n,5) =1 n+l

We will use the following known transformations of the hypergeometric function:

a, b a, ¢ - b —w
(4) 2F s wl = (1 - w)™%F, i e B
c c

(Theorem 20, p. 60, of [1])

a, b 2a, 2b
(5) oFy 1 4z(l - 2)| = oF 1% ®l-
a+ b+ = a+ b+
2 2
(Theorem 25, p. 67, of [1])
In (4), let

a=3+ 1), b=s+ 2, c=n+1,v=ba

We thus obtain

n+ 1 n+ 2 L n+1 n
LT+ LT 4 -=(n+1) L Ll
(6) 2F1 2 ? 2 M 4.2’,'2 = (l - 4.%‘2) 2 ° 2F1 2 > 2; '—4':1:—2 .
n+ 1 1 - 4z
n+ 1
In (5), let
-1 =1 -1l
a = 2(n + 1), b = o B = 2(l 8),
1
where 6 = 6(x) = (1 - 4x2) 2; note that
-‘4.%'2
42(1 = 23) = (1 - 0)(1 +60) =————.
(1-2) = (-0)(1+8 =2
Then
n+1 n n+1, n n
il T2 2 he? | g s 2| = 1Fo| 5 =
s T 2 T 21 H - 10 ’
n+1 1 4 n+1 -
B (n)k o -n
= gk = % (-z)k = (1 - )"
K=o k! k=0(k>
Therefore, using (3) and (6):
1
= z(n+2)
gl = (—1)[5” ]x”(l - z)7nentl,
=0
(n?5)=1
We now make the substitution, y = 6x(l - z)"!. Thus,
- — p-1
y = 220(1 + 0)~1 = 220(1 - 8) (L - 62)-1 = —33112—79——1,
-4

or
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1
1 - (1 - 4x2)?

(7) y =

2x
We then obtain
ot [l(n+2)]
(8) g(x) =8 }: (-1)Ls y™, where y is given by (7).
n=0
(n,5) =1

Next, we obtain a closed form for g(z), as follows:

® 4 1 R A \
g(x) =9 Z (_1)[5(5m+1‘+2)] y5m+1ﬂ =9 Z (_l)mysm E (—l)[s(l‘+2)J yl"
m=0 r=1 o't ~
3 (L + (L - )
= f _,5ym + 2 _ 3 _ 4y o .
%g%( "y d 4 7" 1+ y5 >
hence,
9 g@® =y - yHA -y +y® -yt Tl

To evaluate g(x) as an explicit function of x, we employ the readily verifiable
result:

(10) yz = ylx - l;
Using (10), we obtain

y3 = g2z -y =y + il - 1) = 2+ (1/x% - Dy;

y* = —y/z + (1/x2 - Dy? = —y/z + (1/x? - 1) (y/z - 1)

Il

1- w2 + 52 -2y,
Therefore,

(1-y+y2-y3+y"H =1+2!t-22-y@!l+z?2-2x9,
after simplification, or
(11) 1-y+y?2-yd+yt =03y -0 -x-x2).
Also,

6y(l - y2) = oy + 6(x™L + (1 - 272)y) = -6(y - ©)x™2 + 206y.
Therefore, -
(12) g(x) = xe<§§}%-— 1)(1 -z - x2)" L.
From (10), xy =y - x; therefore,

- 2 _ +1_42 1
- 20 -y _ 4w 1 ( T > (1 - 4e2)? = o-1,

4 1 - (1 - 4a?)?

N

2wy | _ 2%
2

y-=x xYy
Hence, we finally obtain
(13) gx) = x(1 -z - x2)71.

We recognize g(x) in (13) as the generating function of the Fibonacci numbers;
more specifically,

(14) g = ZOFx

Comparison with (2) yields the desired result:

(1) G, =F,, n=20,1, 2, ... . Q.E.D.
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Reference:

1. E. D. Rainville. Spectial Functions. New York: Chelsea, 1960.
Also solved by S. Rizavi and the proposer.
Mu-ve Over

H-445 Proposed by Paul S. Bruckman, Edmonds, WA
(Vol. 28, no. 3, August 1990)

Please refer to the volume of The Fibonacci Quarterly cited above for a com-—
plete statement of this problem.

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY

For Izl < 1, we have

© Zn P © ; ©
(%) Zu(@(————;;) = Yum Y z@kbn= 5 | S un/d)|an.
n=1 L -z n=1 k=1 n=1 dln
d odd
Let n = 2°¢, where ¢t is odd and s > O. Then the set of odd divisors of »

is precisely the set of divisors of ¢. Thus,

1 if s = 0 and ¢t = 1;
oum/d) = w(@2®) L uE/d) = -1 if s =t =13
ddlgd dlt 0 otherwise.
o

Furthermore, (2k - 1)n in (%) is odd iff »n is odd. Hence, we conclude that for
lz] < 1,
n

Loo(Tom) - e e p wo(E ) -

n odd n even
which lead to (1). For (2)-(7), we shall use the identities:
1 1 gms P 1 g™
— ==  __ an = -
/5 Foy  (-1)m - g2ms Lps  (=1)7 + p2ms
1 & u2n) B
(2) For 8 = 1,2,3,..., — = u(m) | ————=—1 = -g2s.
Sngl F2ns mgx;en h 1 - 82ms
2 2n - 1) R
(3) For 8 = 1,3,5,..., w@r - 1) _ _ u(m)(-————-j = -g%,
nz=:1 Lion-1)s mEc;:id 1 - pars

(4) For & = 2,4,6,..., = i uln) i “(n)<TTBnS—

ns n=1

I

1 EDhim o8 (=85 - 2
(5) For s = 2,4,6,..., Snz=:1 P ,Elu(n)<1— (—83)2”> = BS + p2s.

(6) For s

1 & D" wen -1 1 < (£85)" )
1,3,5,00.5, = =-= wim (—E2 ) = _gs,
‘/S”Z‘—‘:l F(Zn—l)s T mzodd I- (7/68)2”7

> D ly@n-1) 1 (2"
(7) For 8 = 2,4,6,..., E = = E (m( - >=85.
n=1 L(Zn—l)s T moddLl ) 1- (7/83)2m

Also solved by C. Georghiou, H.-J. Seiffert, and the proposer.
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