FIBONACCI NUMBERS AND LADDER NETWORK IMPEDANCE

G. Ferri
Universitd di L'Aquila, Monteluco di Roio, 67100 L'Aquila, Italia
M. Faccio
Universitd di L'Aquila, Monteluco di Roio, 67100 L'Aquila, Italia
A. D'Amico

Universitd "Tor Vergata' Via 0. Raimondo 11, 00173 Roma, Italia
(Submitted March 1990)

0. Introduction

This work can be considered the natural extension of a previous study about
the same subject. In fact, the authors have studied [4], from a mathematical
point of view, a particular numerical triangle, called DFF, characterizing the
transfer function of an electrical ladder network formed by a cascade of N
identical coupled cells.

The present paper deals with the study of another new triangle named DFFz
from the authors' initials and from the fact that it characterizes the equiva-
lent impedances determination of the same type of electrical network. In par-
ticular, this triangle is strictly related to Thevenin's equivalent impedance
which can be expressed by the ratio of two polynomials: the one related to DFFz
and the other to DFF triangle.

The DFFz triangle is shown to have a noteworthy interest from the mathe-
matical point of view, because some of its properties are connected with Fibo-
nacci numbers.

1. The Generating Polynomials

The DFFz triangle can be formed in the following manner (with g, ; being
the general coefficient).
We define [3]:

(1.1) An,x = 0 if n < k
(1.2)  a, =1 if n
(1.3) an,x =nm+ 1 if k

i

i)

while the other elements of the triangle can be derived from the recursive
formula

n-1
(1.4)  apx = auo1, 2+ 2 A -1 if n > k.
a=0
In this manner, we have the DFFz triangle for values of a, p:

N0 1L 2 3 4 5 6

1
4 1
10 6 1

20 21 8 1
35 56 36 10 1
56 126 120 55 12 1
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Thus, for example, a, ; = 4 and ag,» = 126.

The generating polynomial P, (x) is defined [1] as

n
(1.5)  B,(x) = ) a,, xxk,
K=0
where

D*P
(1.6)  a, ; = i 1524

k!

From the DFFz triangle, it is possible to obtain the expressions of the
polynomial for small values of »n, namely,

x=0

Po(x) =1
Pl(x) =2+ x
(1.7) Py(xz) = 3 + bx + 22
P3(x) = 4 + 10z + 6x% + «3

and so on.
From (1.1), (1.2), (1.3), (1.4), and (1.5), we have

n n n n-1
(1'8) Zan,kxk = Zan—l,kxk + 2 Z aa,k—lxk'
k=1 k=1 k=1a=0
From (1.8), using (1.1), (1.2), (1.3), and (1.5), we have
n-1a+1 r-1
(1.9)  Py(x) —a, =P, (@ -a, | ¢+ 2a, %
a=0 k=1
n-1

(1.10) P,(x) - (n+ 1) =P, (%) = 7n+x 3 P (2)
a=0

n-1

1+P _ (x) + xgjopa (x)

(1.11) P, (x)

which is the recursive formula for the polynomials.
With the initial condition Py(x) = 1, it is easy to obtain the polynomials
(1.7). Furthermore, we can also use (1.6) to find the triangle coefficients.
In order to find the polynomials, we must apply the previous method. Let

(1.12) f(x, t) = i P, (x)t".
n=1
Then

D" s T
113 B - L2 D1

!
n: t=0

From (1.11) and (1.12), we have

) o n-1

DI+ P, (@]t +x 2 2 P(x)th

n=1 n=1a=0

(1.14)  fx, ©)

ti[l + Pn_l(ac)]t”"1 + xit”[?o(x) + Py(x) + -+ + P, (2)]

n=1 n=1

ti)Pn_l(x)tn-l + i t* +z[l + f(z, D)y f 7
n=1

n=1

I

t t
T -2 + x[1 + f(x, t)]l _—

t[l + fx, )] +

_ -2+ (2 + )
t2 - (2 +x) + 17
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If we develop the denominator in (1.14) in partial fractions, we obtain

1/y(x) N -1/y(x)

(L.15) fx, t) = t-b@/2 t-c@/2

where

>

y(x) = (22 + 4x)12, b(x) = 2 +x+y, and c(x) = 2 + = - y.

From the binomial expansion in (1.15), and after simplification, we also
have

@10 g0 = gl 2 bl pet t Sl |

nxl

nz;l{yc%x)[c(;3/2]n - yb%x)[b(;3/2]n}

2“1[ 1 ~ 1 }5”
W1y @) e 1?*L (b)) 17t

from which we have, using (1.12):

on+l 1 1
(1.17) B, (x) = - :
Vo2 + 4x|[2 + x - V22 + 4o]nt! [2 + x4+ V22 + 4o]nt!

Furthermore, considering the binomial expansion, we are able to put P,(x)
in the following better way:

(1.18) B, (z) = — {( 2t 1> $ (Z)(x+ 2yn-hyh

2" \VeZ + 4a h=0
2 +x 7 nin n-h h
(-1 -1 + 2 .
<¢k2 + 4z > ;g% -0 <h)(x s }

From this equation, on distinguishing the case of odd 4 from that of even
h, we can write

(1.19) P, (x) = 3;{ 2 (Z)(x + 2)t TRt (g 4+ 4)R/2
2" L nz0 (mod2)

+ znj (”)(x + Z)n—h+lx(h—l)/2(x + 4)(11—1)/2 .
d2) h

2. Determination of a,

From (1.6), we have

(2.1) a = ——l——— i (7’Z> Zk:(k>Dj[xh/2 (x + 4)}1/2 ]
BRI o Geany V0N

. n k

A CERILE D YN (4D

h =1 (mod2) i=0

(k_)Dj[x(h-l)/z(x + 4)(B-D/2]
dJ

. Dk'qx-+2]”‘h+%

x=0.

Considering Leibniz's formula, we may write

(2.2)  DIi[xM?(z + 4)h2 ] = ZJI (iﬂh/ﬂz)m!x(h/n-m
e (2

S = mte B i,
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J .
i p(h-1)/ k- - JN((h = 1)/2 _ m
(2.3) DI[x(r-L/2(g 4 4)(h=-1)/2] _m);o (m)( . )m!x((h 1)/2)

((Z—_l;/z)( - m) ! (x + 4)(h-D/D-gFm
(2.4)  D* (@ + )" F] = (Z - h)(k - e+ 2)n TR,

(2.5) Dk’j[(x + 2)n—h+1] - (7’1 -h+1

k-3

From equations (2.3), (2.4), and (2.5), and from the properties of binomial
coefficients, (2.2) becomes

(2.6) An,k = *L{ i ( > E:(: iox(h/z)—m<z '_' ?)(x + z)n—h—k+j

2" | nz0 (mod 2)
O e o e

)(k - Dz + 2)"- h+l—k+J

S (M) (h = 1)/2\((h = 1)/2 )
* (x + 4)((71 1)/2) -5 +m
h51%0d2)<h>jz=:o mzo( m >( J - m >
. p(-D/D-m(n = k41 mehAl -kt
x ( - >(9c + 2) } 0
=

When x = 0, the m-sums (which contain the x-term) exist if and only if
= (h - 1)/2 and m = h/2, respectively. So we can write

n k B
(2.7)  anx = hEOE(:modz)C;)Zo(j @/i/zxz g ?>2h k- g
k - —_

' h=1 <mod2)<2)2<<7 Eh(h i)6/2)(}1 k Zz ; 1)2h S

Equation (2.7) 1is the wanted expression which permits us to determine a,
by substituting for n and k.

3. The Properties of a, i

3.1 The row sums of the triangle are equal to
Fibonacci numbers with even subscripts

From the expression of P, (x), when x = 1, we have

(3.1)  P,(1) = [(3 4 /5)n*tl = (3 = /5)n+l],

1
n+lf
From Binet's formula, we have
1 l+/§2n+2 l_/§2n+2
Tg[( 2 ) ’( 2 ) }
If we notice that

(3.3) <1 12 /5)2 _3 iz /5’

then (3.2) becomes :
7%113 2 /§>n+1 ~ (3 E /§>n+l}.

(3.2)  Fopsp =

(3-4) Fyyp =
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In this manner, we have
Pn(l) = F2n+2’
where F0=0, F2=l, FL}=3,

3.2 The sums of the triangle diagonals
give the powers of 2

From a direct inspection of DFFz triangle and (l.4), we have that the sum
of the elements of an upward-slanting diagonal is equal to the sum of all ele-
ments which are above this diagonal PLUS ONE and, consequently, it is equal to
the sum of all superior upward-slanting diagonals plus one. This sum value is
a power of 2.

In fact, if we define

n
E:n = Eq)an—r,r’
p=

it is possible to write

DOMIETD DLEEIFD Sl ISR 3 S G|
Z(Zn-2+ Zn—3+ R zl +2>

= 2”‘2<Zl + 2)

2",

]

[}

, 1
since E: = 2.
4. Conclusions

The principal aim of this paper has been the determination of a closed ex-
pression of the general coefficient a,,x of a new numerical triangle, named
DFFz, which characterizes Thevenin's equivalent impedance of a ladder network
whose elementary cells are directly coupled. Moreover, the authors present
some of the interesting mathematical properties of the triangle, one of which
is connected with Fibonacci numbers.
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