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1. Pascal7 s Triangle Mod 2 

It is well known that striking patterns of triangles can be produced from 
Pascal's triangle by replacing each binomial coefficient by its residue with 
respect to a certain modulus. The arrays thus produced were considered by 
various authors; see, for instance, Gould [5], Gardner [1], Long [10], or Sved 
[17]. For example, Pascal's triangle mod 2 (Fig. 1) is the array of zeros and 
ones obtained by considering the parity of each entry in the usual Pascal 
triangle. It can be readily constructed using the basic recursion formula 

"•» G) - G : I) • C ; ' ) 
together with the rules for addition mod 2. (In Fig. 1, this array is shown 
"right-justified" for convenience in further discussions, with all entries 
resulting from coefficients of the form (̂ ) aligned in the rightmost column. 
Furthermore, for the sake of clarity, groups of zeros in this figure have been 
enclosed within triangular shapes.) 

We shall be concerned in this paper with some number sequences introduced 
via Pascal!s triangle mod 2. Gould [5] has considered the sequence obtained by 
reading the rows of this array as base two representations of numbers. We 
shall introduce analogously other number sequences and show how certain regu-
larities of such sequences follow directly from the patterns found within the 
array. It is our purpose in this paper to base our discussion essentially on 
the geometrical structure of Pascal's triangle mod 2. So we complete this 
introduction with a description of this geometrical structure. 

We. borrow the following terminology from Sved [16, 17], with the notation 
|rl representing the residue of (") mod 2 (0 < r < n). The cluster of order h9 
or h~cluster3 is the portion of the array formed by all the residues |"| for 
0 < n < 2h, and the zero-hole of order In {Jn * 0), or h-hole, is the (inverted, 
left-justified) triangular array made of ( 2 ^ - 1 ) decreasing rows of zeros, 
with (2^ - 1) entries in the first row down to a single entry in its last row. 
[Anticipating the forthcoming geometrical characterization of Pascal's triangle 
mod 2, see the following paragraph, the /z-hole thus corresponds to all residues 
|r| with 

(1.2) 2h < n < 2h + l - 1 and n - (2h - 1) < r < 2h.] 
For example, the clusters of orders 0, 1, and 2 are, respectively, 

1 
1 1 

1 1 0 1 
1, 1 1 , and 1 1 1 1 , 

while the zero-holes of orders 1 and 2 are of the form 

0 and 0 0 0. 
0 0 
0 
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Figure 1 

The overall structure of Pascal's triangle mod 2 can be described as fol-
lows. Let us observe the array as it grows downward, thus producing successive 
(nested) clusters. Then the cluster of order h3 consisting of rows 0 down to 
2h - 13 is made of three clusters of order (h - 1) surrounding a zero-hole of 
order (h - 1) (see Fig. 2, where the three (h - l)-clusters have been labeled, 
respectively, I, II, and III). A formal proof of this characterization can be 
given by induction, using the recursion formula (1.1) (see Sved [16]). The 
geometrical pattern of the array could become even more striking by replacing 
all zeros by blanks in Figure 1. Note that when extending the process to an 
infinite number of rows, the limiting pattern is found to be "self-similar" 
with fractal dimension log23, as discussed in Wolfram [19] (see also the "Sier-
pinski gasket" described in Mandelbrot [12, p. 142]). 

This geometrical characterization of Pascal's triangle mod 2 allows us to 
state a few basic properties. 

(l.i) Row 2h - 1 consists of 2h ones: 111...Ill (2h lfs). 
(l.ii) Row 2h consists of two ones separated by 2h - 1 zeros: 100...001 

(2h - 1 0?s). 
(l.iii) More generally, row 2h + u, 0 < u < 2h, consists of two copies of row u 

separated by (2h - 1 - u) zeros. 

Result (l.i) follows from the fact that row 2h - 1, which is the bottom row of 
the h -cluster, is obtained by concatenating the bottom row of the (h - 1)-
cluster with itself. Property (l.ii) is then an easy consequence of (l.i) 
using mod 2 addition. As for property (l.iii), it expresses the fact that row 
2h + u, which is located in the (h + l)-cluster, is obtained by inserting, in 
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between two copies of row u of the /z -c lus te r , the (u 4- l ) t h row of the h-hole. 
[ i . e . , a sequence of (2h - 1 - u) z e r o s ] . These r e s u l t s can be rephrased as 
follows in terms of the p a r i t y of binomial c o e f f i c i e n t s . 

( l . i 1 ) Al l c o e f f i c i e n t s (2 l \ , 0 < r < 2h - 1, are odd. 

( l . i i T ) Coef f ic ien ts ( ) a re odd only for r = 0 and 2h. 

( l . i i i f ) 2h + u 
v 

2h + u 
2h + v for 0 < u < 2H and 0 < v < u. 

Figure 2. The c lus te r of o rde r h 
(The dotted line indicates the "principal diagonal" r) 

As was observed by Kung [9] or Sved [17], results (1. i)-(l. iiif) follow 
from a simple glance at the binomial array mod 2. However, the reader should 
note that all six of these properties can also be obtained as immediate conse-
quences of certain well-known facts about binomial coefficients. For instance, 
by a result due to Kummer [8, p. 116], one has the following: 

(l.iv) The exponent of 2 in the prime factorization of (") equals the number of 
borrows in the subtraction n - v in base two. 

(See Singmaster [14] or Goetgheluck [4] for recent proofs.) Hence |"| = 1 if 
and only if there are no borrows in this subtraction. A direct algebraic proof 
of property (l.i) can be found in Vinogradov [18, p. 20]. Alternately, as 
observed by Roberts [13]5 (l.i) follows immediately from the fact that, for a 
fixed n, the number of odd binomial coefficients y^j is given by 2 1 , where 
#l(ft) represents the number of l!s appearing in the base two representation of 
n. This last result, stated in Glaisher [3], is easily justified using the 
following theorem of Lucas [11]: 

(l) -• ( # ( £ ! ) - CD < - 2>-
where (ft^ft^_^ no)two a n d O ^ f c - l ^0>1 are the binary representations 
of ft and 2>, respectively. (This last result of Lucas plays a central role in 
the "masking" relation used by Jones & Matijasevic [7] for encoding the history 
of calculations of a Turing machine. It is this latter work which has prompted 
the present author's interest in Pascal's triangle mod 2.) 
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2. Gould1 s Numbers 

Let us now use the binomial array just discussed to define a sequence 
^Gn}n>Q of natural numbers as follows: Gn is the number whose binary represen-
tation is given by the nth row of Pascalfs triangle mod 2. This sequence, 
which starts 

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, ..., 

was considered by Gould [5] (see Sloane [15], sequence no. 988). We shall call 
the Gn*s Gouldrs numbers, 

We can use facts (1.i)-(l.iii) about Pascalfs triangle mod 2 to deduce some 
basic relationships among Gouldfs numbers. For instance, we have 

(2.1) G2h = 22h + 1 = Fh, 

where Fh denotes the hth Fermat number. This stems immediately from the parti-
cular form of row 2h [see (l.ii) above]. [Similarly, by (l.i), G^ ~\ - 21 - 1.] 
It then readily follows that for an arbitrary n = 2h + u9 0 < u < 2h, we have 

(2.2) ^7 7 * x2h +u 2h 

since the sequence of lfs and 0fs forming row 2h + u9 as described in (l.iii), 
can be directly seen as being the (binary) product of row 2h and row u. 

For n having the binary representation (nknk„i ... ̂ o^two * o n e t n e n deduces 
from (2.1) and (2.2) the remarkable relation 

k 

(2.3) Gn = n KK 

i = 0 
Indeed, writing n as a sum of powers of two, the digits n^ indicate the powers 
2^ needed for expressing n. Result (2.3) was stated by Gould [5] [see formula 
(50)] and a proof was given by Hewgill [6]. (Gould [5] stated another remarkable 
relation about GouldTs numbers, namely: ^2n+l ~ ^2n- This result is easily 
proved inductively from the geometrical pattern of the binomial array mod 2. A 
formal proof of the same result can be found in Garfinkel & Selkow [2].) 

When (2.2) is rewritten in the form 
(2.4) T2h +u Gnj2l + G» 

one obtains nice symmetrical representations. For instance, (2.4) yields the 
following for h = 3 and 0 < u < 8: 

GQ = 
GS = 

^10 ~ 
Gil = 
Glz -
G 1 3 = 
GXh = 

<a5 = 

257 = 
771 = 

1,285 = 
3,855 = 
4,369 = 
13,107 = 
21,845 = 
65,535 = 

1 
3 « 
5 « 

15 • 
17 
51 
85 
255 

• 256 + 
> 256 + 
» 256 + 
• 256 + 
• 256 +• 
» 256 + 
• 256 + 
• 256 + 

1 
3 
5 
15 
17 
51 
85 
255 

A suggestive interpretation of Gouldfs numbers can also be obtained from 
(2.4), using property (l.iii'). Let us recall that by definition the Gn*s sat-
isfy the equality 

(2.5) 2n-

Then (2.4) says that for n - 2^ + u this sum can be seen as made of two parts 
corresponding, respectively, to the successive values 0, 1, — 9 u and 2h, 2h + 1, 
..., 2h + u = n of the index r. In the former case one has, because of (l.iii1), 
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r= 0 
2n 

r= 0 r= 0 
o w -

so this partial sum corresponds to Gu shifted by a factor of 22 . In the lat-
ter case5 the terms sum directly to Gu because, for r = 2h + £, 0 < i < us one 
can write5 again by (l.iii1), 

2u-

Figure 1 nicely illustrates the situation, since it has been displayed in such 
a way that in each /i-cluster, the column corresponding to the term of weight 
22" in the binary expansion of G2h+u is easily located. 

3. Along Fibonacci Diagonals 

We now want to use the binomial array mod 2 to introduce other sequences of 
numbers. Among remarkable lines in the (standard) Pascal triangle are the 
Fibonacci diagonals, i.e., those slant lines whose entries sum to consecutive 
terms of the Fibonacci sequence. When the binomial coefficients are displayed 
in the shape of a right-justified triangle, similar to Figure 1, the nth Fibo-
nacci diagonal, starting at (Q), contains all those entries obtained by moving 
successively two columns to the right and one row up. By the basic formula 
(1.1), the nth Fibonacci number fn (where fo=fi = l and fn+2 ~ fn+l + fn) ^s 

the sum of all coefficients thus obtained: 

[i] 
fn - E ( n ; r ) . r = 0 

with [x] indicating the integer part of x. For instance, 

^ = (o) + (?)+(2)+(3)+(4)=1 + 8 + 21 + 20 + 5 = 55-
In analogy with the way Gould1s numbers were defined, we now want to intro-

duce a sequence {Hn}n>0 of natural numbers whose binary representations are 
given by the Fibonacci diagonals in Pascal fs triangle mod 2. Let us use An, 
n > 0, to represent the string of digits found along the nth Fibonacci diagonal 
mod 2 (for instance, Ag = 10101). Then Hn is the number represented in base 
two by An. We thus have, analogously to (2.5), 

f] n - T 
v 

[ ! ]-(3.1) En = £ 
r = 0 

so that, e.g., Hs = (10101) 
two — 21. The first values of the ^-sequence are: 

1,1,3,2,7,5,13,8,29,21,55,34,115,81,209,128,465,337,883, ... . 

As might be expected, the Hn* s satisfy some nice generation rules, and we 
will make use of the geometry of Pascal fs triangle mod 2 to give proofs of 
these rules. Before doing so, however, it is interesting to redisplay the 
entries of Figure 1 so that the nth diagonal An becomes the nth row in the new 
array (see Fig. 3). Some striking patterns can be observed in this array. 

For instance, it is readily seen, for those values listed, that kih-l c o n ~ 
sists of a one followed by a string of 2^_1 - 1 zeros, so that 

H, 2h -1 = 2
2"-1"1. 

Also, the staircase pattern of Figure 3 appears to be made of symmetrical parts 
that could be directly described by introducing a terminology based on "clus-
ters" and "holes," as was done for Figure 1. For example, rows 0 down to 14 
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can be seen as being separated in two layers by row 7; the lower layer (rows 8 
to 14) is made of three sections, namely a copy of the upper "cluster" (rows 0 
to 6) that has been shifted down by 8 rows and to the left by 4 columns, next 
to an upside down copy of this same part (i.e., a mirror image of rows 0-6 in 
row 7), the remaining entries in between these blocks being filled with a 
"hole" of zeros. Thus, A9 consists of a copy of A]_ (1) and a copy of A5 (101) 
separated by one zero, while A13 consists, conversely, of A5 and Aj separated 
by three zeros. 

0: 1 
1: 1 
2: 1 1 
3: 1 0 
4: 111 
5: 10 1 
6: 110 1 
7: 10 0 0 
8: 1 1 1 0 1 
9: 10 10 1 
10: 110 111 
11: 10 0 0 10 
12: 1 1 1 0 0 11 
13: 10 10 0 0 1 
14: 110 10 0 0 1 
15: 10 0 0 0 0 0 0 
16: 1 1 1 0 10 0 0 1 
17: 10 10 10 0 0 1 
18: 110 1 1 1 0 0 11 
19: 10 0 0 10 0 0 10 
20: 1 1 10 0 110 111 
21: 10 10 0 0 10 10 1 
22: 110 10 0 0 1 1 1 0 1 
23: 1 0 0 0 0 0 0 0 1 0 0 0 
24: 1 1 1 0 10 0 0 0 110 1 
25: 1 0 1 0 1 0 0 0 0 0 1 0 1 
26: 110 1 1 1 0 0 0 0 0 111 
27: 1 0 0 0 1 0 0 0 0 0 0 0 1 0 
28: 1 1 1 0 0 110 0 0 0 0 0 11 
29: 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
30: 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
31: 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
32: 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 
33: 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 

Figure 3 

Such observations about the geometrical pattern of Figure 3 will be made 
more precise in the following sections, where the main results of this paper 
will be established. 

4. The Principal Diagonals 

Going back to Pascal's triangle mod 2 (Fig. 1), we call the Fibonacci diag-
onal A2h _ 1 the principal diagonal of the cluster of order h. It thus consists 
of all entries of the form 

for 0 < v < 2h'1 - 1. \2h - 1 - r\ 
I r J 

We now prove a few basic properties of principal diagonals. 

Lemma 4.1: A2h ml = 100 ... 0 (2h~1 - 1 zeros). 

This result could be obtained directly from property (l.iv): it suffices to 
note that 

2h - 1 0, unless r = 0, 
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since, for v > 0, a borrow certainly occurs when subtracting p from 2h - 1 - p 
(in base two representations). The following is an alternate proof, based 
solely on the geometrical observations introduced above. We use the notation 
An,r for the pth element \n~r\ of string An, 0 < r < [|j , so that 

An,0An, 1 A -0-
Proof: The elements k2

h-itr> 0 < v < 2h~l 

according to the value of the index p. 

(i) 0 < r < 2h~2 

1, can be separated in two groups, 

1. By property (l.iii1), we have 

hh -i, 
2h - 1 - v )h-l + (2 h-l - 1 p) 7h-l 1 - P 

2h~l-l,r 
so that the portion of A2n _i corresponding to the given range of p is identical 
to the principal diagonal of the (h - 1)-cluster. 

(ii) 2h~2 < v < 2h~l - 1. It is readily checked that the bounding conditions 
(1.2), as modified for the zero-hole of order (h - 1) , are satisfied by the two 
components of each entry A2h_1}J1. Thus, this portion of A2^-i is entirely in-
cluded in the (h - l)-hole. 

The proof of the Lemma can then be completed by an easy induction on h. The 
base case can be read directly from Figure 3 and the induction step follows 
from (i) and (ii): the first portion of A2^_i5 which by the induction hypothe-
sis is of the form 100... 0 (2h~2 - 1 zeros), gets juxtaposed to the second 
portion made of 2h~2- zeros, so to give the desired form for the principal 
diagonal of the /z-cluster. II 

It follows from the preceding proof that the principal diagonal A2^_1 of 
the cluster of order h goes through this cluster in a very regular way. For 
instance, when p = 2h~2, we get the entry 

ih-l . oh-2 + r I 
yh-2 

this tells us that the diagonal A2/z _ i "enters" the 
entry of its middle row. Similarly, for p = 2h~l -

2h-l 

(h - l)-hole at the first 
1, we have the entry 

ih-l 1 

so that the last element of A2h _ L is found at the end of the first row of the 
(h - l)-hole. When combined with the fact that the principal diagonal starts 
at the leftmost entry of the cluster, this information on specific entries of 
A2h _x leads to the dotted line of Figure 2, which represents this principal 
diagonal. We now want to make explicit certain types of symmetry within the h-
cluster connected to the principal diagonal. 

It is trivially true that each line of the Pascal triangle mod 2 is symmet-
rical (with respect to its middle), i.e., remains the same when inverted from 
left to right: this indeed is even true of the (standard) Pascal triangle 
itself, because of the basic relationship 

( " ) - ( n ). 
\v) \n - P/ 

We now want to prove a symmetry property concerning the columns. We show that 
the principal diagonal A2^ _ L can be seen as an "axis of vertical symmetry" for 
the portions of the columns determined by the /z-cluster, in the sense that the 
entries above and under the principal diagonal, on each such portion of column, 
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are pairwise identical. For instance, the principal diagonal Aj_5 of the 4-
cluster cuts it in such a way that the section of column 5 included in this 
cluster is separated into 110-011 by A15, and that column 12 is separated into 
100010-0-010001 (with the middle 0 belonging to A 1 5 ) . 

Lemma 4.2: The cluster of order h is "vertically symmetrical" with respect to 
its principal diagonal A2^-i. 

Proof: The proof is by induction on h, with basic cases being easily verified. 
Let us consider, for a given r such that 0 < r < 2h - 1, the portion of the rth 

column inside the /z-cluster (which we shall call abusively the "rth column of 
the /z-cluster"). There are then two possible cases: 

(i) 0 < r < 2 h-l , 1. By the geometry of the binomial array mod 2, column r, 
which is entirely included in the (h - l)-cluster II (see Fig. 2), is a copy of 
the analogous column of the (h - 1)-cluster I, so the symmetry property fol-
lows from case (i) of the proof of Lemma 4.1 and from the induction hypothesis. 

(ii) 2h~l < v < 2h - 1. Column r then consists of three parts: a vertical 
string in the (h - l)-cluster I and another one in III separated by a vertical 
section of the (/z - l)-hole (see Fig. 2). Clearly, again because of the geo-
metry of the array, the parts in I and III are identical and each is self-
symmetrical, by the induction hypothesis. It thus remains to show that A2^_]_ 
cuts the (/z - l)-hole symmetrically. But this is an easy consequence of the 
fact just mentioned above that A2^-i enters the (/z - l)-hole at the first ele-
ment of the middle row of this hole and ends at the last element of the first 
row. B 

A consequence of Lemma 4*2 is that the symmetry with respect to the princi-
pal diagonal A2^-i inside the /z-cluster can also be seen as acting along diag-
onal lines, in the sense that two strings "parallel" and "equidistant" to A2^-i 

112 I 
0 IS will be identical. For instance, A^2 = 1110011, whose first entry is 

identical to the string determined by the line of the same slope starting at 
15 . More generally, any entry Q , with V < 2h - 1, which is located at the 
top of column 2h - 1 - V of the /z-cluster, is surely equal to the bottom entry 
on this same column inside the /z-cluster, namely, 

2h - 1 
2h - 1 - v 

Now, if we issue from these two entries two lines parallel to the diagonal 
A2T?_I, we will obtain identical strings, because we then encounter pairs of 
entries, located on same columns, which are equidistant from the principal 
diagonal, hence equal by Lemma 4.2. We thus have 

Lemma 4.3: The cluster of order 
its principal diagonal A2^_i. m 

is "obliquely symmetrical" with respect to 

5. The Geometry of An 

Given n = 2h + u with 0 < u < 2} 1, we present in this section some rules 
for expressing the nth Fibonacci diagonal hn in terms of diagonals depending on 
u (note that for u = 2h 

This diagonal A2
h +u> which contains the entries 

1, the rule for An is given by Lemma 4.1 above). 

2h +u, r 
+ U 

V 
for 0 < r < 2h + >h-l 

I 2 ̂  + u I 
can be found in the cluster of order (h + 1), starting at entry | 0 | and mov-
ing upward diagonally. It thus consists of three parts corresponding, respec-
tively, to the regions of the (h + 1)-cluster being cut by this diagonal (see 
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Fig. 4): the head of h2h is made of all the entries A2h+ u,r belonging to the 
/z-cluster II, the body is the part included in the h-hole and the tail comes 
from the /z-cluster I. We now prove some basic results about the Fibonacci 
diagonal A2^+u. 

/ • • • ^ 
It'—• 

/ II 

. . • • • • • • • ' ^ 

I 

.-<^ 

II 

Figure 4. The Fibonacci diagonal A2h + U *n t n e (h + 1)-cluster 

Lemma 5.1: The head, the body* and the tail of A2^+M consist, respectively, of 
the entries h2h+u>r such that 

a) head: 

b) body: 

c) tail: 

u\ 
2J 0 < v < 

+ 1 < v < u 

u + 1 < v < 2h~l 

Proof: The verification involves routine calculations. For example, the range 
of v for the head follows from the stipulation to stay inside II and from the 
slope of Fibonacci diagonals being 1/2. For other cases, we need to identify 
the values of v for which conditions (1.2) are satisfied. For instance, for v 
= [u/2] + 1, we get 

2h + «.[!] + 1 
2h + A -

. 2 . 

~u 
2 

f 

and (1.2) can easily be verified for 0 < u < 2h - 1. The value of r can be in-
creased up to u while remaining in the h-hole, and we then get 

= l2hl 
A 2 h + u, u u 

which again satisfies (1.2). But, for r = u + 1, we have 

2h + u, u + l 
2h - 1 
u + 1 

which, is above the zero-hole of order h and thus in the tail of h2
h + u* ^°  

complete the proof, we just note that in the case u = 0 , the body is void since 
the head then consists of the single element A2^, o = 1> which is the first 
entry of row 2h

 9 located at the apex of the ^-cluster II, while the next 
element h2ht ± = 1 is in I and thus belongs to the tail. El 
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Lemma 5.2: The head and the tail of A2Jz+w are, respectively, l\u and A2h-2-u-

Proof: For r such that 0 < r < ^ , we have 

\2h + u - r\ 
*2h + u, r 

\u - r 
v 

AU, V ' 

where the second equality is true by (l.iii1), since we have 0 < u - v < 2^ and 
0 < r < u - r. This shows that the head of A2^+w is Au. In the case of the 
tail, let us notice that its first entry, namely, 

A 2 h + w, u + l I u + 1 

is located at the bottom of column u+l inside the /z-cluster I. From the dis-
cussion preceding Lemma 4.3, the top entry of this column is 

\2h - 2 -

I °  
i.e., the first element of &2h-2-w ^e then conclude by the "oblique symmetry" 
of Lemma 4.3. M 

It should be noted here that our assumption that u < 2h - 1 ensures that 
2h - 2 - u > 0. 

Before closing this section, we would like to comment further on the rela-
tionship between the entries making up the tail of &2h+u an& t n e diagonal 
&2h-2-w By" Lemma 5.1(c), these entries are of the general form 

(5.1) A 2h +u, r 
2n + u - r , for v = u + 1, 2n + u 

We just noted in the proof of Lemma 5.2 that for the first of these entries we 
can write, by "oblique symmetry," 

A 2h + u, u + 1 
2n - 1 
u+l 0 

More generally, for r ranging over the values indicated in (5.1), this same 
"oblique symmetry" described in Lemma 4.3 gives us 

(5.2) 

where t 

2n + u 2 - u 
t 

- v - u - 1, i.e., t takes on, successively, the values 0, 1, ... up to 

\2h + u\ 
u 1. 

Another equivalent way of expressing this relationship is that the element 

(5.3) \2n + u - v , with u+l < v < m can be directly rewritten, by a simple change of variable, as 

(5.4) 2h - I - s 
u + I + s , where 0 < s < ^ - u - 1 

(note that this last expression still represents an element of the diagonal 
^2h+u^' ^n turn, by the symmetry property of Lemma 4.\3, entry (5.4) becomes an 
element of A2h-2-u9 namely, 

^ n \2h - 2 - u - t\ , .-. . n ^ , ̂  \2h + u] . 
(5.5) , where, again, 0 < t < -z - u - 1. 
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These remarks w i l l be used in the proof of the next r e s u l t . 

6. Calculating the Hn
?s 

We are now in position to give some calculation rules for the numbers Hn. 

Proposition 6.1: (i) #2^-i = 2^ 

(ii) B 2n + u H + H?h_9_ , for 0 < u < 2h - 1, 

Proof: Case (i) follows immediately from Lemma 4.1. The idea behind the proof 
of case (ii) is that the value of B^h + u c a n ^e obtained in three steps by look-
ing consecutively at the head, body, and tail of A2^+u as described in Lemmas 
5.1-5.2. Taking into consideration the shifting of Au when it becomes the head 
of A2^+us t n e result is then transparent. 

To be more precise, let us evaluate, for n = 2h+ u, the three partial sums, 
£]_, 5*2 5 and 53, obtained from (3.1) according to the ranges of r identified in 
Lemma 5.1. We first get: 

["u 
L2 

si - E r = 0 

1 
n - r 

v 

u - r 
v 

M - z 
p = 0 

u - v 
V 

m-
where the second equality follows from (l.iii1). This first partial sum thus 
corresponds to the shifting of Au by 2^_1 positions in order to get the head of 
A2fc+M-

The second partial sum is 

5, = •£ 
fi + 1 

n - v 
v 

2L2J 

It was already observed in the proof of Lemma 5.1 that, for the given values of 
I3, we have 

\2h + u -
v 0, so that S2 0. 

Finally, we turn to the last partial sum, £3. From the discussion surround-
ing expression (5.2) [or equivalently (5.3)-(5.5)], we can write 

s3 = £ 
r = u + 1 

n - v 
v 

[ ? ] -
t = o 

2 - u - t 
t 

M~u~: 
LZh -2-u' 

The value of this partial sum thus corresponds to the tail of A2^+u being given, 
by "oblique symmetry," by &2h-2-u' m 

Proposition 6.1, case (ii), provides us with nice symmetrical representa-
tions for the Hn's, as was the case with Gould's numbers. For instance, for 
h = 3 and 0 < u < 7, we have the following expressions: 

#8 
#9 
10 
11 

= 29 = 1-16 + 13 
= 21 = 1 • 16 + 5 

55 = 3 • 16 + 7 
34 = 2 • 16 + 2 

Hl2 = 115 = 7- 16 + 3 
#13 = 81 = 5 • 16 + 1 
# m = 209 = 13 * 16 + 1 
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By r e s t r i c t i n g t h e s e q u e n c e {Hn}n>0, r e s p e c t i v e l y , t o e l e m e n t s of even and 
of odd r a n k s , we o b t a i n t h e two s u b s e q u e n c e s 

1, 3 , 7 , 1 3 , 2 9 , 5 5 , 115 , 209 , 4 6 5 , 8 8 3 , 
and 

1, 2 , 5 , 2 1 , 3 4 , 8 1 , 128, 337 , 546 , 

To these sequences would correspond triangular arrays that could be obtained 
from Figure 3 by deleting appropriate alternate rows. The behavior of these 
new sequences is very close to that of the Hn's and it is possible to deduce 
for them results entirely analogous to those presented in Lemmas 5.1-5.2 and 
Proposition 6.1. We omit the details. 

Using the tools developed above, we can now easily prove other properties 
of the Hn's. For example, we have the following two results. 

Proposition 6.2: H2n = H2n_1 + H2n+l. 

Proof: From (3.1), we can write directly 

H2n-l + E 2n+l 
n- 1 

E 
s = 0 

2n 
2n-l-s + £ 

r = 0 

(6.1) In + 1 
0 2" + L 2n - P 

p - 1 

2n + 1 -
p 

2n + 1 
p 

2n-

Now let us observe that from the basic relation (1.1), it follows that 

2n + 1 
p 

2n 
p • 1 

2n - P 

p 
(mod 2), 

So, by substitution of the right-hand side of this congruence into the coeffi-
cient of the large summand of equation (6.1), we obtain 

(mod 2). 2n -
p -

p 

1 
+ 2n -

p -
p 

1 
+ 2n - P 

p 
- 2n - p 

p 
2n| Moreover, the coefficient of the first term can be trivially replaced by . Q 

Hence, we finally get 

I 2n 
H-In-I + H 2rc+l 

r = 0 
# 2n« 

Proposition 6.3: H2h_2 + #2fc = 2 * ^2^+1* 
P r o o f : H2h_z + H2h = ( # 2 * _ 3 + E2h _x) + (#2fc_x + H2h+l) by P r o p o s i t i o n 6 .2 

= ( # 2 ^ - 3 + ^ ) + H2h + i 
= (# x • 2 2 " " 1 + H2h_3) + H2h + l 

- H2h+i + ^o^ + l ^^ P1"0?08!*1!011 6.1. M 
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