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1. Introduction

Elsewhere [2], I have investigated the properties of G;M(x), the Genocchi
polynomials of order k (20), which were shown to be related to E{(x), the
Euler polynomials of order k, and to Bém(x), the Bernoulli polynomials of order
k.

When k = 1, we have the Genocchi polynomials of the first order, the sim-
plest polynomials of Genocchi type.

If x = 0, the Genocchi numbers arise.

Following NOrlund ([4] and [5]), who pioneered the study of Bg%j(x) and
Eﬁ'm(x), the Bernoulli and Euler polynomials, respectively, of negative order,
I here offer some of the most important properties of Gé'm(x), the Genocchi
polynomials of order -k (k > 0, n 2 -k). So far as I am aware, the material in
this contribution represents new information.

The justification for seeking knowledge about the negative order polynomi-
als is stated by NOrlund [4]. After saying that there is advantage in extend-
ing to negative order the notion of functions of positive order, Norlund
continues: "On peut ainsi faire rentrer dans un méme cadre des fonctions quti
apparaissent jusqu'ici comme distinctes." [We can thus combine in one frame-
work functions which up to now appear as distinct.]

Beyond this justification, I feel that the G$®(x) have a vitality of their
own which deserves recognition.

Euler and Bernoulli Polynomials of Negative Order

Norlund ([4] and [5]) defines the Euler polynomials of negative order -k by
e

=" (- VI 4 1) L. (@Y 4 1)et®
(1.1 > FE’S D@lwy .. wy) = (e ) oK (e )
n=0""

and the Bernoulli polynomials of negative order -k by

£ (k) (e"f - 1) ... (ePF - et
1.2 —B L Wye..W = .
(1.2) ,;::071! G 2 Wi w T
If wy =wy, = --- =w, =1, then (1.1) and (1.2) become

I

o no + ko,
(1.1) 7 Z t_!EVE k)(x) <g> eb-'r

n= 072 2
and
E (k) el = 1Nk i
! = =
(1.2) n;)n!Bn () ( - > et

The definition to be given in (2.1) for Genocchi polynomials follows the
modified forms (1.1)’ and (1.2)', though an extension to the patterns in (1.1)
and (1.2) could be adopted.

For subsequent comparison with corresponding forms for Gi{k>(x) (k =1, 2, 3,

..), the first few expressions for Eﬁ'm(x) and B;'m(x) are:
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(1.3)  E§¥@ =1
1

El(“k)(ac) =2 + 2k
Ez('k)(x) = x2 + kx + Eg:—l)
2
Eé'b(x) - 23 4 3502 4 3k(k + D, , k2 + 3)
2 4 8
2 2 _
Eﬁ““(x) = 2%+ 2ked + 3k(k2+ 1)x2 . k (k2+ B)x + k(k + 1)(ﬁ6-+ 5k - 2)
AR REAREEE
(1.4)  BSP@) =1
(-k) _ k
BT(x) =+
(-k) _ .2 k(3k + 1)
By () s + kx + — 17
R 2
B(Jo(x) - 23 +-§kx4v+ k(3k + l)x + k“(k + 1)
3 2 4 8
2 3 2 _
B('“(x) B N k(3k + 1)x2 " k= (k + 1)x " k(15k>+ 30k*+ 5k - 2)
o 2 2 240
Putting kK = 1, we readily derive the table:
(1.5) ESY (@) BS V(@)
n =20 1 1
n=1 x + % x +%
n =2 x2+x+% x2+x+%
n=3 ©3 + 322 + 3z + 5 23+ 322 + 0+
no=+4 ozt + 203 + 322 + 2c + 5 at+ 223 + 222 + x4+

2. Generalized Genocchi Polynomials of
Negative Order

Definition and Basic Properties

Define

©

(2.1) ZkG’S_k)m[zT' - () et k=1, 2,3, .00,

2t

whence
(2.1)" G;Jo(x) is undefined when »n < -k,
i.e., m+ k 2 0 is necessary for the existence of G,(l_k)(x).
Putting Xk = 0 in (2.1) leads to the situation covered in [2] when k = 0, so

we exclude this repetition.
Calculation in (2.1) gives us the first few Genocchi polynomials:

2.2) ¢ = |-k

-k) 1
Gfk+1(x) = |-k + 1> + sk
- -k + 2!
Gfkli)z(x) = ———————l 1 | {xz + kx + k(e + 1) 2+ 1)}
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(=K) “k 3! 3k 3k(k + 1 k2(k + 3
Gy 3 () =——§!——L{x3+~2~x2+ ( A )JL'+ ( 3 )}

(k) [_k 4“ 3k(k + 1) k2(k + 3)
G_k+q(x) = —4,—{9{,‘L‘L + 2kx3 + 5 x2 5

+ k(k + 1) (k2 + 5k - 2)}
16

In particular, when k = 1:

2.3) P =1

- 1
GeP@ =+

(-1) _1f 0 1
Gy (%) Z{x + x + 2}

(-1) 1§33, 32,3 .1 1\, .2
G2 (x) 3{x + zx + 2x + 5 3(x + 2>(x + x4+ 1)
V) = Lat 4 203 + 322 + 220 + 1

3 4 2

(-1) _Llfs 5 u 3 2 .5, .1
G4 (x) S{x + zx + 5x° + 5x¢ + 5% + >

_1( Ly, u 3 2
=sle T §>(x + 2x° + 4xc + 3x + 1)

.......................................................................

The Genocchi numbers Gé_n (n 2 0) thus form the sequence

1 1 1 1 1
! = = —_ = —
(2'3) 2{13 2, 39 4; 5, ---}5

while

(-1) . A(-1) _nm+ 1
(2.3)" Gn—l - Gn = T -+~ 1 as n > o,

Comparison of (2.1) with (l1.1)' reveals that

[ ]!

(2.4) 670 = TR () -
Differentiating both sides of (2.1) w.r.t. x leads to the Appell property
(21 (-£)
G, "™ (x) -1
(2.5) g - nG, {(x), n+ k>1, n >0,
whence dpG,(l_k)(x) »
(2.6) ———255——— =nn-1) «-- (n - p+ l)Gn_p(x), n-p=0,

so that, using (2.3), we have
n+1 ~(=k)
d G, (@) _

|
(2.7) ) n!
Integration of (2.5) gives (with n » n + 1):
x+1 (=k) (-k)
_ G (1l +x) -6 (x)
(2.8) f R (@) doe = L ntl
x n+ 1
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Summation Formula

Theorem 1:
%) < |n]!
(2.9) >+ y) = 2,

— R @)y
PN I SAPIRRE 4

Proof: o w ©
(-k) th (L4 et\k o (-k) tr ymem
n;an (x + y)|”|! = ( 77 ) et® oty —r;kGr (x)!r’[!mgo =
SR ]! (-k) n-j _t
= — G T
D S e TN FTER A M T

after rearranging the terms.
Equate coefficients of t?/|n|! and the result follows.

For example, if Xk = n = y = 2, both sides of the formula (2.9) lead to the
expression, also derivable from (2.2),

. 1 1 1
6Pz + 2) = 150+ 2+ 47a? + 105 + 957

Furthermore, if Kk = 3, n =1, x = 0, and y is replaced by x, then (2.9) gives
@) = 2 + 3z + 3)

in conformity with (2.2).

Complementary Arguments

We say that x and -k - x are complementary arguments.

Theorem 2:
(2.10) ¢Sk - z) = (1R ().
Proof:

(k) t? (1 + et\k (~k-x)t _ (_ k(l + e't>k —tx
L2 Ok e - (=) e - T @

(—l)k i (_l)n GSL_k) (x)_én__

s 'n’!

D N A
=k {n|!

I

Comparison of the coefficients of t"/ln‘! yields the result.

GS%)(x) if ¥k + n is even,

Corollary 1:
(2.11) GEF(-k - ) = {

-¢$M(x)  if k + n is odd.

Special cases of interest occur when x = 0 and (equivalently) & = -k. In
either of these instances, consider also k = 1.

Corollary 2: In Theorem 2, replace x by x - (k/2). Then

(2.12) Gf{k)(-x - 12?) = (—l)”+kG,(l'k)<x - %)

If x = 0 in Corollary 2 (or x = -k/2, k + n odd, in Corollary 1),
then

(2.13) Gﬁ[")(—%) =0, k+ 7 odd,
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i.e., Gé_b(m) has a zero when x = -k/2 for k + »n odd.

Thus, in (2.2), Gf;?z(x) has a zerc when x = -k/2 for & odd.

Analogue of the Multiplication Theorem

More accurately, this analogue of the multiplication theorem [2] could be
called a '"division theorem'" for negative first order Genocchi polynomials. As
in [2], there are two cases to consider, one of which involves B%‘l)(x). Unfor-
tunately, as for k > 0, this theorem does not extend beyond k = -1.

Case I: m odd

Theorem 3a:

-z -1 "L 1
(2.14) GSV(E==) = sl T (D765 (@ + 8).

Proof: - o=t i
nZ:_1W s;d -0°6C V(@ + ) =S=Z_1 e ot g8t
= l—lege—tetx(—e“t F 1 —et 4 oo + (=1)M"2om-2)t)
- 1—;;—75@“5(—6*)(1 S ot 4 e - ... 4 (=1)m-lolm-De)
—l—te—tet(m"l)- Lte? em, since m is odd
2t 1+ et
(L) L geoge

Therefore,

(-n(x =1 lm.2 s o(-1)
M=) = oy - “x + , m odd.
G, ( > m ;—1( 1765« s) o

Case II: m even

Theorem 3b: ,
-— m-= -

(2.15) BTV(EZ2) = n 1Y (DPE V(w4 ).
m s =-1

Proof:

S Y ()E D@ + 8

n=—1|n‘! s=-1

t
= _lLe._etx. _e—t(l — ot + g2t _ e3t + .. F (_l)m"le(m—l)t), as in
2¢ Theorem 3a
t — mt
= —%e—et“‘l)ll—;%;, since m is even
t(z-1) me _ o mi(z-1)
=_.e____...(]_ _emt) =m-lag——————oe m
2t 2 mt
m S (me)" (—1)(.90 - 1) . 1.2)"
= 2;::0 1 B —), on using (1.2)
_mttl &t (e - 1
T2 ,?;O n!B” ( m )
Equate corresponding coefficients of ¢"/n! and the result follows. It is
to be noted that, in the left-hand side summation, n = -1 and m even lead to
the term

Lom_i+1) =o.
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Relations between Polynomials of Successive Orders

Theorem 4:

i 26 2 (x - 1) n
(2.16) {5V - 1) + ¢S () =

2 (-2)
Tn——_—I—I—'-Gn 1(.%‘ -1) n

]

1
—
-
(@)

Proof:
o - - 1+ et _ 1+ et
L 67w - 1+ o 1>(x)]|n|! = (et 4 () et
_ 1 -;tetetx(l + e—t) = 2t<l_gt_et>zet(z—l)
- 2042 t! (-2) D t
= 267 (x )l_2|!+2¢;_1 (z -1 l l +22nc; A

Equate coefficients of t”/|n|! and the result follows.
Clearly, the result can be extended to GﬁJO(x).

With * » £ + 1 in Theorem 4, we have

Theorem 5: ZnG( 2)(ac) nw=1, 2, 3, ;

(2.17) P00 + z) + ¢SV () = 2
—¢H@ n=-1,0,
[n - 1177

with a straightforward extension to n = -k if desired.

A companion result is

Theorem 6:

2.18) ¢SV + 2 - ¢{V(x) = z”B;‘”(a—zc), (n > 0)

Proof:

-1 e D e [ (LR ety e e
[ZG (1 +2) - Gy (oc)]n, (F2) et - De

_ o3 p-D(x\t" ) ,
=2 ég%B” (2>n!’ on using (1.2)7,
from which the formula follows.

To generalize Theorem 6, we need to expand (et - 1)X. After suitable alge-
braic manipulation, it ensues as in the proof of Theorem 6 that
(2.19) Z( 1)d- 1( 6SPG + @) = (DFER(S) (= 0).

Jg=0

Theorem 7:
(2.20) (n + DESP(@) = n(@ + D@ - G(O)(x) (n=1).

Proof: Differentiate both sides of (2.1) for kX = 1 w.r.t. ¢ partially, and then
multiply by t. It follows that

1 (-1) nt _ (l + e®\ s, et (tet - (1 + et)>
) +n>;16 @ = (Pt + 5 o t
t t
- (Lﬁ)emm + 1) - (Ltﬁ)etx _ e
26 2t 2t 2 [Feb.
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Equate coefficients of ¢”"/»n! and the result follows. Observe (see [2]) that
G(O)( —
o (x) = x™.

The » = 0 term, being a constant, does not contribute to the summation on
differentiation w.r.t. ¢ partially.

Proceeding in the same manner, we may establish the generalization

(2.21) (0 + WEP@ = 0k + DR @ - 7% V@ =D,

n-1

In particular, when k = 2, the left-hand side of the first line of the proof in
Theorem 7 (after partial differentiation and multiplication by %) becomes

2 _(d+x S (-2), Nt
, — + 0+ nz=:1G” (@)
since the n = 0 term does not contribute, being a constant as far as partial

differentiation w.r.t. ¢ is concerned.
G,(l_k)(x) in Terms of G,(n“l)(f(x))

Adopting a different technique, we are enabled to derive formulas connect-
. (~k) . . . . . . £ 3
ing G, () with negative first order Genocchi polynomials of appropriate func
tions f(x) of x. When k = 2, 3, we have

Theorem 8: 1f n =2 0,
2n + 1)65P ()

n+2
2{27L+1G7(1—+l}.(§> + G(‘l)(x)} _x

1 3
(2.22) . . 926 nt n o+ 2
4n+ 2)(n + DG, (x) = 3{3n+1an+2(§> + 6N + 1)}.

Proof: Consider

t 2 2t X t tx
(2.23) <1_i_e_) ottt = £<1_iﬁ_>32t-§ + _2_<_l_"i>etx _ €

2t 2¢6\ 2 ¢ 2¢ 26\ 2t 2¢2
and 3 ( 1
1 + et> tx 3 (1 + e3t> 3t.% 3 (1 + et)t x +
. —_— = —5(—7— 3+ =\ .
(2.24) ( 2t ¢ 422\ 2 « 3¢ G2\ 2%

Equate coefficients of ¢"/n! and the results follow. (xnt2 = Grgg_)z (x) by
[21.)

Determination of the somewhat complicated extensions of (2.22) for general
k is left to the curiosity of the reader. Depending on the parity of k, we
will obtain two separate expressions in the generalization. Nevertheless,
there is a unifying principle in the proof, namely, the grouping of pairs of
appropriate terms; when kK is even, there will be additionally a single unpaired
term.

Similar kinds of results may be obtained for E(n'k)(x) and B%’k)(x) on using
(1.1)" and (1.2)'. However, in the case of Bernoulli polynomials we remark
that, for k even, B,(l_k)(x) is expandable in terms of Genocchi polynomials.

Gé_l)(x) in Terms of Gf;”(%)

Theorem 9:

n
Dy __nlt ey - Ly
(2.25) Gn () ngl (n - r)! II;I!GI’ (2><x ) )
Proof: ©

- t" (1 + et _(L+ety £ (a-3)t
,/;_IG" (x)ln]! ‘< 2% )etx '( 2% )ez et ?
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-1)(1 1>S+l s+1
= Gy (E> (x"i t

=s§1 -1tz ' (s + D! +{r§00(_1)(%>%}{mio(x B %)m:]_""} )

Application of Cauchy's multiplication of power series and comparison of
coefficients of ¢"/n! yield the desired result.

Sums of Products

What happens if we square both sides of (2.1)? Clearly,

(2.26) ( Y ag-1><x>i’l>( > 65V (@)L )
n=-1 I”l' =-1 I [

(1 er et>22t.2x

Z ¢$? (2m)

T

Comparison of coefficients of t”/[nl! yields a set of sums of products, ex-
pressible in general form as

(3] 4D
2 2 6f 1)(oc)—”L(L n odd,
ji=-1 I JI!
(2.27) 5P (2x) = X
[n_ ] ¢
2 3 65 (= )l’?—Jl, + G5 (@) n even.
j=-1

Furthermore, if we replace ¢ by -t in one of the infinite sums in (2.26), we
find

(2.28) ( Z G( 1)(.%,)I ]'>< Z G( 1>( )( ) > _(l ;tet>2e_t

n=-1 n=-1 I l'
o~ (-2) t
= -3 §PCnE,
=Z—2 n )|”I!
leading to formulas for GSQ)(—I) similar to those in (2.27). Observe that
G¢C?(-1) = 0 when 7 is odd, by (2.13).

Putting x = -1/2 in (2.27), we also obtain formulas for GgQ)(—l) in terms of
eV (-1/2).

Interested readers may wish to extend the above theory to unspecified k in
G(Z‘(x) Additionally, one may determine results corresponding to those in
(2.27) for Euler and Bermoulli polynomials.

3. Miscellanéous Theorems

Use of Boole's Theorem

For a polynomial P(x), Boole's theorem states that
P(x +y) = VP(z) + B (y)VP'(x) + lE’z(y)VP”(x) + lEs(y)VP"’(x) boeee,

where the symbol V ('nabla') represents the operation of the mean of the func—
tion (see [2]) and E;(x) (Z =1, 2, 3, .) are the Euler polynomials E (x)
obtained from (1.3) by replacing k by —l. Prime superscripts signify dlffer-
entiation w.r.t. .

Now

el (z) = %(G;-U(l +x) + ¢5V(@) by the definition of V
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nG {7 (x) (m=1, 2,3, ...)

= " by Theorem 5.
i—n—:_ﬂ'—G( )(JC) (n=-1, 0)

Put y = 0 in Boole's theorem and take P(x) = Gé_n(x).

Then Boole's theorem becomes, for n > 0 (2.5),

6TV @) = W6 @) + B TETD (@) + L (076D (@) +
that is,

Theorem 10: When n = 1, 2, 3, ...,
(3.1) ¢SV = uelH @) + B 0) - 16l (@) + = 5 (0) « ne A @) + ..
For example, if n = 2, the right-hand side reduces to
(3 3.2, 3 l) _ A(-D) )
3<x + Zx + Zx + 5 [= G2 (x) as in (2.3)].

Genocchi Polynomials in Terms of Bernoulli Polynomials

The Fuler-Maclaurin theorem (see [3]) states, in the case of polynomials
¢V (x), that
- ' - _ ’ Bz(x) 1y
6y @) = 86T(0) + By@)seTV (@) + —aeGPT0) 4 -

where B;(x) (¢ = 1, 2, 3, ...) are the Bernoulli polynomials Bgn(x) obtained
from (1.4) by replacing k by -1 and A is the symbol for the operation of taking
the difference.

Now, by (2.5),
e (@) = ne{ @ (> 0)
and, by the definition of A,
3.2)  acSP@ =eSPa v - eSP@

= ZHBEJJ(%> by Theorem 6 (n = 0).

Then, by (2.5) and (3.2), the Euler-Maclaurin theorem leads to
Theorem 11:

(3.3 nel @) = z”{B;'”(O) + By (@)BSV(0) + 2( “)

=BV 0) + } (n > 1).

When n = 3, the theorem reduces to

3 3x

(-1 23 2
3G, (x) = + % + 5> 2,

which is true by (2.3). Theorem 11 enables us to display G;ﬁ)(x) entirely by
means of Bernoulli expressions. Both Theorems 10 and 11 (for k¥ = 1) may be
extended to cover the case when k is general.
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Some 'Hybrid' Products

Let us write
_ - " _ < -t)"
6= Y, o= Y ¢P@tl,
n=0 n. n=20 n.
(3.4)
s = S (=D t" A N C PN Gl
G* = G (x)——, G* = G (x)———
n;1 i [n]1 ng:_l i [n]!
where G is as defined in [2], G* refers to (2.1) when kK = 1, and G_, G* are ob-
tained from G, G*, respectively, by replacing ¢ by -t¢. Corresponding symbol-
ism F, ..., E*, B, ..., B%* relates to Euler and Bernoulli polynomials, where &
and B are also defined in [2].
Then, by [2] and (2.1)

(3.5) GG* = g2t*

and

(3.6) GGX = -¢7?.

Equating appropriate coefficients yields the hybrid results

nt 1 Gg-l)(x) G () 2x)"
(3.7) Z( a .[n_Jj|!)=

j=1 n!
and o e
(3.8) ”f(Gn () (-1 Gn_jm) (!
j=i\ ! |n-g1! ln-1]1
Similarly,
(3.9)  G.G* = —e? = (GG)7}

and
(3.10) G_G* = e~2t= = (GG*)~1,

yielding results corresponding to (3.7) and (3.8). The case G*G*; has been
covered in (2.28). 1In addition,

K% = 1+—et)2 -t(2x+2)
Gzaz = ( 2¢ ) °

gives the summation (2.1) for GE{Z){—(ZQL‘ + 2)}.
Moreover,

[ EFE* = BB* = eltx
E_E* = B_B* = gt
B Y
G*E te
GE* = te?t”
(3'11)‘ s T3 1 + et 2 te2x
G¥E* = t(—-———zt ) e
1 e?t - 1 2t.%
*RFx = = = = 2
G*B 7 57 ¢
2t Y
wx = E -1 Zt(' )
e P

for example, among a variety of possible products. The last three equations in
(3.11) give the summations (2.1) and (1.2)' for
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(-2) (-n(x -n(_1
eiA ), BG(F). and BSV(-3),

respectively.
Our theory may be extended to values of k > 1.

Products of powers of the G, E, and B symbols give rise to an immense num-—
ber of identities, for example

GG_G*G*, =1,
(3.12) <{GE(E*)? = tettT,
G3G2(G*)2B_B*(E*)3 = 3.

To avoid tedium, we leave the challenge of exploring such possibilities,
which may be continued almost ad infinitum, ad nauseam!, to the ingenuity and
perseverance of the reader.

4. Differential Equations

Descending Diagonal Functions

Arrange the G,([l)(x) in (2.3) according to the following pattern:

4.1 P =P

G5y = 6§ + acP

V@) = 6D 4 2elD + x2gGH
65V@) = 6§V + 20600 + w26{D + LoD
(@ = 65+ 3205 + 322600 + 2365 + JatelP

- - - - - 1 -
GV @) = 6V + ax6Y + 62265 + axde{™) + el + 2S¢
in which

4.2) ¢SV

i ]! GO ypn-d
j:—l (n_j)!ljl!J
as in [2] for G(nl)(:c).

Imagine now that the terms are considered to lie in an infinite set of
downward slanting '"parallel 1lines" to form the following set of descending
diagonal functions {gy(L'l)(x)} (n=-1, 0,1, 2, ...) and their generating functions

(x| <1):

4.3 g = ¢ (L z+ 2a? 4 ted ket ) = 6500 - Tog(l - @)
gé—l)(x) - Gé’”(l frx+ a2+ a3+t o) = Gé‘l)(l - z)"1
g @) = 67V + 2w + 3%% + 4xd 4 .l0) = ¢ - )2
gSV @) = 65V + 33 + 602 + -1 =P -

.....................................................................

with, generally, as in [2] for G(nl)(x),
(4.4)  giP@ = 670 - o)~rrb,
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Note that
| g;-l)(x) i G(rfl)jg:o (” ; J)xj n=0
gt 0y = &V
(4.5) o gé’”@-\) = n*lgED 0 s 0
= (1 + log Z)G_(_ll) n o= -1
Lgé_u(l) is not defined.
Write 3
(4.6) D =Dz y) = ni:lgf[_lf(x)y”“l =n;G,§'_lf(1 - @)yl
whence

4.7 ny%—yp- - (- DA -0E <o,

while, from (4.5),

d (_1)(.7:)
46.8) (1 - = (4 DD @)

Observe in (4.6) that gf_ll)(x) has been omitted.

Reverting now to (4.2), we may easily generalize this formula by replacing
-1 by -k (three times). For what follows, the reader may find it helpful to
construct a partial table like (4.1) from (2.2). An analysis of the cases
k =2, 3, ... then discloses the interesting nexus:

1, 2, ...)

¢ gl g T =1 - log(l - @) (n= -1)

[

o) {gf{“(x) _P@ @ s -m . (=0

When n < -1, there is no such simple pattern as in (4.9) [though, excep-
tionally, g_(—zz)(x) is expressible in terms of gf'il) (x)]. This unstructured situ-
ation results from the somewhat wayward behavior, as k varies, of

- -k 1 -k + 2! -k + 3!
(4.10) gGR (@) = Gfk){l + |-k|!<l_k TP . 2 - ! +>}

which is aberrant on account of the unusual presence of modulus factorials.
The repetitive nature of the g;'k)(x) is understood if we examine successive
levels in the layout of

¢GR @y, ¢SGR @, 59, @,

corresponding to (4.1).
Consider, for example, the coefficients of x in G_(Jjj_)B(ac) and G_(;E)L}(x), i.e.,
|-k + 3] n |-k + 4]t
[~k + 217 *+2 [~k + 3[1 k+3’
respectively. Substituting k = 2 in the first case and kK = 3 in the second, we
have immediately 1 - G((J'Z) and 1 ° Gé—:”, i.e., the coefficient 1 is repeated.

and

Rising Diagonal Functions

Concentrate next on the infinite set of upward slanting '"parallel lines"
which form the following rising diagonal functions:
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

.11 TP @ = etP
ni (@) = a§Y
hi_m(x) = xGEED + Gi‘”
h‘z'”(x) = aché‘” +6{Y
nSH (@) = ExZGE_ll) + 2067 + 6§
hﬁd)(x) = szé_D + 3ng*) + Gé'”
-1 1 -1 - - -
V@) = 523600 + 302670 + 4w + 6V
RSP () = 236§D + 622650 + saeiH 4 gV
(-1) _ 1l hA-D 3A(-1) 2~ (-1) -1 (-1)
hey " (x) = 7 GL7 + 4x°Gy + 10x°G3 " + bxGy T+ Gy
RV (@) = 2465 + 102365 + 15226070 + 726SY + 6§

Generally,

(-1) n - g1t v s
4.12 h x) = T B ..
( ) n ( ) J;O J!In _ 2j|! n-—ZJ.’L‘
Clearly,
4.13) A5V ) = ¢ = gCh(0).
Consider

1
1]

(4.14) R = B(z, y) Zlh;__li(x)y”‘l

(1 - xyz)'lGé—U + y(1l - xyz)'ng_”
2 -3~(-1)
+yo(l - xy )G, + ...

Writing
(4.15) ¥ = (1 - ay?) 7260 + y(1 - ay?) 736\ + y2(1 - ay?) Hei + ..
and
(4.16) ¢ = (1 - ay2) 726" + 25(1 - xy?) 7365 + 3y2(1 - wy?) MY + ..
we readily obtain, as in [2], the partial differential equations
3R _ 2
(4.17) "o = Y U]
and
dR
(4.18) 5 = 2myb + ¢,

leading to

3¢ _ 2 3V _ k]
(4.19) e = Y 3y 2y oy

on partially differentiating (4.17) w.r.t. y and (4.18) w.r.t. x and then apply-
ign Bernoulli's theorem:

%R B%R
dxdy  dyox’
Generally, n+kl
2 1
& n - 1t o s
(4.20) *h (x) = G, .Y,
n jz% J!]n - 23]! n-2j
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NEGATIVE ORDER GENOCCHI POLYNOMIALS

i.e., -1 in (4.12) has been replaced by -k (three times), and an extended theory
for differential equations may be pursued corresponding to that given in [2].
Observe that, whereas in (4.20) the number GE?) has been omitted, in the gene-
ral case, the numbers GEE), ij), cees fo) will be missing.

5. Concluding Remarks

Many other properties of Gé’m(x) may be developed, but it is hoped that
this exposition will give a flavor of the basic ingredients of the mixture.
Further extensions could, for instance, involve relationships with ng>(x) and
EgJQ(x). As a guide to the possibilities, one might consult [2] for corre-
sponding material relating to Gg*)(x), e.g., graphs, and for appropriate refer-
ences.

In treating Gé—m(x), there is the obvious choice of deciding whether or not
to exclude the cases n = -k, -k + 1, ..., -1. Inclusion of these values does
add to complications in the theory. Without them, one can sometimes proceed
from results in [2] for kK =2 0 to those established here, simply by replacing k
by -k. This situation gives the continuity and unity mentioned by Norlund (for
Euler and Bernoulli polynomials) in the French quote in the Introduction.

Consideration of negative values of #n in GS%Q(x) adds much to the complete-
ness of the theory and, despite the difficulties involved, enhances the enjoy-
ment of the work.
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