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1. Introduction

Many papers concerning a variety of generalizations of the Fibonacci se-
quence have appeared, primarily in The Fibonacei Quarterly, in recent years.
Horadam [l] was one of the first to initiate this interest when he changed the
two initial terms of the Fibonacci sequence from 0, 1 to Hy, H;, arbitrary
integers, while maintaining the recurrence relation. He remarked in [1] that
there are fundamentally two ways din which the Fibonacci sequence may be
generalized; mnamely, either the recurrence relation can be changed or the
initial terms can be altered. The two techniques can be combined, of course.
Of the two alterations, a change in the recurrence relation seems to lead to
greater complexity in the properties of the resulting sequence.

Some generalizations have been given names. The Tribonacci sequence, {T,},
is defined by

(l) Tn = 71—1+Tn-2+T71-3 (7’[23), TO = 0, T]_ =T2= 1.

A generalized Tribomacci sequence results when the recurrence relation is the
same and Ty, Ty, Ty are arbitrary. The Tribomacci sequence and this particular
generalization have been examined rather extensively in the literature. See,
for example, [2], [3], [&4], [5], [6], [7].

The Tetranacci sequence, {M,}, is defined by

(2) M?’L = M?’L"l + Mn_z + Mn—3 + Mn—L\L (7’L > 4), MO = Ml = O, Mz = M3 = 1.

The first mention of the Tetranacci sequence seems to have occurred in [2],
and it has received further brief attention or reference in [8], [9], [10],
[11], [12]. Some writers have used the name "Quadranacci" (Latin) instead of
"Tetranacci" (Greek). We use the latter, as in [2].

The characteristics and properties of the Tetranacci sequence apparently
have not been examined in detail, and that, along with an examination of the
generalization which occurs when the four initial terms are chosen as arbitrary
integers, is the purpose of this paper.

As the recurrence relation and initial terms of Fibonacci-type sequences
become more general, we quite mnaturally expect that the relationships among
terms and the formal properties of the resulting sequences will become more
complicated and complex, and this indeed is true. Nevertheless, by employing
appropriate techniques, particularly by using vector and matrix methods, a
number of properties of the Tetranacci sequence and generalizations and
identities involving terms of these sequences are found and proved.

2. Fundamental Properties

As we begin an examination of the Tetranacci sequence and generalizations,

two '"companion" sequences emerge and are considered along with (2). These
sequences are designated {N,} and {S,} and are defined as follows:

(3) Ny = Nyy + Npog + Nyog + Vypoy (02 4), Ng =Ny =0, I} =1N3=1,

(4) S?’L = n-1 + Sn_2 + Sn_a + Sn_l_} (7’[ > 4), ‘SO = 33 = l, S]_ = 52 = 0.
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS

The sequences {N,} and {S,} have the same recurrence relation as {M,} but
different initial terms. The initial terms are, in fact, two distinct permuta-
tions of the four initial terms of {M,}. It can be shown also that these two
companion sequences are further related to {M,} by

(5) Ny =My y +My_p + M3 (n23),

(6) Sy =My +M,_o (n2z2).

We define the generalized Tetranacci sequence, {u,}, as
(7) p = Up-1 F Wpop + Uyog + ey (002 04)

where up, Wy, Mo, W3 are arbitrary integers.
The analogous generalized companion sequences, {v,} and {0, }, then become

(8) V, = Vo1 F V0 v+ vy (2 4)

or, alternately,

9 Va = Hp-1 * Hu-2 + Hy-3 (1 2 3),

where vo=1) = Wg> V1 = Hp = M1s V2 = M3 = Mg, V3 = Mz + up + ug,

and

(10) Op = Op-1 + Oy + 0,3 + 0,2y (2 4)

or, alternately,

(11) Op = Hp-1 T Hpy-p @ 2 2),

where 0g = Wy = W; = Mp> 01 = Wz = Mp = H1» Op = My + Hgs 03 = My + Wy

The choice of the initial terms of {v,} and {o,} is not arbitrary but is deter-
mined by their relationship to {uj,}.

The table below gives values of the three sequences {¥,}, {VN,}, and {S,}
for m = 0 to 18.

n{0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M,{O O 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10,671 20,569

N,|O 1 O 1 2 &4 7 14 27 52 100 193 372 717 1382 2664 5135 9,898 19,079

S,/L 0 0 1 2 3 6 12 23 44 85 164 316 609 1174 2263 4362 8,408 16,207

The analogue of Binet's formula for the Fibonacci sequence can be derived
for {M,} and {u,}. 1In [7] Spickerman and in [3] Waddill and Sacks derived the
analogue of Binet's formula for the Tribonacci sequence and later in [8] Spick-
erman and Joyner generalized the result obtained in [7] to recursive sequences
of order K. Since the Tetranacci sequence is a variation of the recursive
sequence of order 4 in [8], the formula there may be adapted to give Binet's
formula for the Tetranacci sequence; namely,

- n n n n
(12) M, Alrl + A,r7 + A3r3 + Arl,
where A; are constants and »r; are the four distinct roots of
gt - x3 - x?2 -2z -1=0.

Binet's formula for p, is the same as (12) except that the A, are functions
of uwg, W1s> Mo, u3. The A4; and r; in (12) may be computed routinely but the
resulting formula is long and cumbersome; hence, it is not written explicitly
here nor used in the sequel.
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THE TETRANACCI SEQUENCE AND GENERALIZATIONS

A useful means of representing the recurrence relation of the Tetranacci
sequence 1is by employing what we call the T'-matrix, the analogue of the ¢-
matrix [13] which has been widely used in establishing properties of the
Fibonacci sequence.

The T-matrix is defined to be

(13) T =

OO = =
O = O
_0 O =
OO O -

Induction proofs may be used to establish

M, 11 1 1|3 M3 ]
Mpoy | _ |1 0 0 0 My
(14) u,_, O 1 0 o0 M, |’
| M3 | O 0 1 0 | | Mg |
Uy, 1 1 1 é n-3 Ug_
Uy -1 _ 1 0 0 U2
15 n = s
(15) Up-2 0 1 0 0 'S
L Hn-3 Lo 0 1 0] L Ho |
and ~
1 1 1 1" My 4o ) Sn+2 My 41
(16) 1 o0 0 O = | Mav1r Vpwr Spel My
0 1 0 O M, v, Sy M, 4
Lo 0 1 0 My-y  Npoy  Spoy Myop

The right side of equation (16) indicates a reason for calling {N,} and
{S»} "companion" sequences of {M,}: both occur naturally in successive powers
of the T-matrix.

Although up to this point, we have restricted the subscripts of the Tetra-
nacci sequence and generalizations to being nonnegative, we may remove that
restriction and define {M,}, {WN,}, {Sy} and their corresponding generalizations
for all =.

By writing the difference equation (2) as

(17) My = Myyry = Mpig = Myyp = Myys

and choosing n < 0, then n + 4, w + 3, n + 2, and n + 1 are all greater than 7,
which allows us to define M, by the four terms immediately following it. That
is,

M_1=M3—M2—M1—Mo,

M.y =My — My = My = M_y,

and so on.
We may obtain another useful definition of M,,n < 0, by using the T-matrix.
We first write (14) as

n

M, o 1 o o]
My 0o 0 1 o] |m
(18) Mpsp 0 0 0 1| |M
M43 11 1 1| | o

Now, in (18), if we replace n by -n, we have, for n > 0,
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My 0 1 0 0™ M -1 -1 -1 -1 |"| My
(19 Mysr | _ ] 0 0 1 0 My | 1 0 0 O My

M_pio 0 0 0 1 M, 0 1 0 0 My |?

M43 1 1 1 1| My 0 0 1 o0 M3

which defines M, for n < 0; and this definition using the 7T-matrix is equiva-
lent to (17).

The sequences {N,}, {S,}, {un}, {va}, {0,} may be defined for n < 0 in like
manner.

We now establish some interesting and useful identities. Using (15) and
(16), we may write

Un+p I 1 1 1 P[1 1 1 1]73] usg
(20) Un+p-1 _ 1 0 0 O 1 0 0 O Ho
Hrtpos 01 0 0 0100 "
Mt p- 3 0 0 1 0 00 1 0 1o
| Mpvp Wpep Spaz Mpa My
= | Mpe1 Dpr1 Sper Mp Hr-1 ||
Mp p Sp o My Wn-2
L Mp-1 Tp-1 Sp-1 Mpp Wn-3
From which we conclude that
QL) ey = Mgty + oty F Siply T Mgl g
or
(22) Wpap = My by + W ou, g + 6'n+2“p—2 + My Hpoge

By replacing Ny+y and Sp4+p using (5) and (6), regrouping and then employing
(9) and (11), we find that (21) and (22) may be written

(23) Hptp = M%+2un + M;+1vn + M?cn + Mp—l“

n-1

oY

(24) Mptp = Mn+2“p + Mn+1vp + Mnop + Mn-l“p—r

As special cases of (21) and (23), respectively, when p = 0, we have

Mo = My qug + W quy + 5, 1y + M, o

or

Wy = My_jug + My_pvg + My_303 + My_yhp.
We next consider the sequence {7, } which is defined by

RO = Ml’ Hl = 82’ Rz = N2, B3 = M2

and
R3, M1 1 1 0 0 |7 1f Ry

(25) Ban-1| = | Vusr L0 1 0 By
B3p-2 Sp+1 1 0 0 1 s
R3n-3 My, 1 0 00 Ry

The generating matrix of {%,} is the transpose of the ZIT-matrix, and the
terms of {A,} are generated in groups of three rather than singularly as in
(14). It is evident that the sequence {F,} is merely a meshing of the three
sequences {M,}, {N,}, {S,}, and, comnsequently, its terms are not as '"spread
out" as the terms of either of these sequences individually. This latter
property become useful in establishing identities later om.

The generalized sequence for {R,} is designated {p,} and is defined as ex-
pected by
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Pg T Hy1s P =62’ Po = Voo Pg T Hoy

and

P3n [ Hus 1 1 0 o |l P3
(26) Pan-1 = Vn+1 = 10 10 Py
3n-2 om+1 10 01 pl
P3,-3 | Uy, 1 0 0 O Py

Mn+1 My Mn—l Mn—Z O3

= | Musr Wy Nuoy Npop P2

Sp+1 On Sp-1 Sn-2 Pl

L My Myy Mp_p Mu_3 Po

Identities analogous to (21) and (23) may now be written for the sequences
{v,} and {o,}. Using (26) and writing

I p

Wntp 1 1 00 1 1 0 0 (™3] uy
(27) Vn+p _|l1 010 1 01 0 Vs

Tn+p 1 0 0 1 1 0 0 1 O3

M po1 1 0 0 0 1 0 0 0 0,

Moyy Mppy HMp o My Hn
= Zp+2 Nprr p zp—l Vn s
Speo Sper Sp S Oy
L Mp+1 MP Mp—l Mp—z un—l
from (27) we conclude that
(28) Vatp = Np+2pn + Np+1vn + Nyo, + Np—l“n—l’
(29) Vptp = Nn+2“p + Nn+1vp + thp + Nn-l“p—l’
or by (20) replacing p; with v;, we have
(30) Vyrp = M%+2vn + N?+2vn_l + S%+2vn_2 + Mb+1vn 3
3D Vrp = MooV T V0V 1 T S0V T M Vg
Similarly,
(32) Optp = S?+2un + Sp+lvn + Spon + Sp_lpn_l,
(33) Opap = Spyolp + 5,01V + Sx0p + 5, 1Hpo1>
(34) Oprp = My 00, + Ny 00, 1 + 5,150, o + My 0, 55
(35) Oy = M0t 00 T T Y Ty
We may further generalize (21) to read

(36) Worp = Mownioty g & ooV T SppneoMn-n-2 T MpynaiHp-x-3>
where k is any integer. Since {u,} has been defined for all n, all terms in

(36) are defined even if a chosen value of k produces negative subscripts.
Also equations (22)-(24) and (28)-(35) can be written in this more general way.
In the vector on the left side of (15) the terms

Un’ Un_19 Un_za Un_a

are clearly adjacent terms of the sequence {p,}. By using appropriate matrices
we can write a vector in which the four terms are not adjacent but are '"spread
out" in a prescribed manner.
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By (21) we have, for arbitrary integers p, g, and r,

Hp +p Mpro Nprp Spen Mpyy Hy
(37) Unag | = | Yqu2 Dguo Sgun Mou Hpoa

Hysp Mr+2 Nr+2 Sr+2 Mr+1 Hyoo

My 1 0 0 0 B3

Using (23), (28), and (32), we conclude that

Hutp Mpso Mpay Mp My )| Mg
(38) Vn+q Ngvo gy Ng Uy Vi

n+r Sr+2 r+l1 Sr 5 -1 On

Uy, 1 0 0 W,
Equations (37) and (38) will be used later on.

3. Linear Sums

A number of linear sum identities were discovered and proved. We give some
of these and write them in terms of the generalized Tetranacci sequence, even
though each has as a special case the corresponding identity for the Tetranacci
sequence. All the 1listed identities may be proved by induction, but that
method of proof gives no clue about their discovery. We give one proof to
indicate how these identities, in general, were discovered.

We have
« 1
(39) _Eg)ui = g[un+2 + 2u, * U, 20 +oug - pa],
5
n 1
(40) ,EO Hoza1 = FL2Mpu40 F Mg, = Mg, o1 = 20 T 20y = 3wy * ougls
;5
C 1
(41) ;::O‘Jzz' = 3l20gne1 + Mooy T Mg Foug —uy F 3up - 2ugl,
. 1
(42) 1.Z:O”szi = gléug, 1t Mg, = Mg, o1 Mg,y F 5Mg ~ Uy - 3wy + 2ugl,
z 1
(43) 2 Mgin = glélg, o + Bugy — Mg, Fug, oyt 20+ 7uy = 3wy - gl
20
w 1
(44) ,20“3“2 = glhbg,es ¥ 305,05 ~ Mg Mg, — g o+ buy — dugl,
<
n Ly -1 1
(45) ,21“47, = izo Hp = Flbg gy + 20y, 00 F My F 20w - ougls
4 -
n Ln 1
(46) _Zlu“’l*‘l =izlu,,; = g[p“‘n,',z + ZUHn + an_l - UO + Ul - U3];
= =
n L4n+1 1
(47) ,Zlquz = 2oHe = gl T 2u g Fowy, - oug - 20 - gl
1= 1=
n Un+2 1
(48) 7;2—:1“””3 = 223 Wy = Sl F 20,00 F iy © Mg T 2ZHp - 31y gl
14 [Feb.



THE TETRANACCI SEQUENCE AND GENERALIZATTIONS

Proof of (39): We write the following obvious equations;
“O + Hq + Ho = My - U3
Hp Ty tug = ug -y
Ho + H3 + Wy, =~ U5

I
-
o

L Uyt Hual T Hugg = Huyo
Mo M4 Mgy = Wpgge

Wyt T

_.l...

Now, adding these equations, we have

n n "

2. He F Z T D e R T (T (S R TN T
=0 =0 =0
or

31_2:.0“7; = Mpgy T 2Wpgy T My P 2Up tg - UG

which may be reduced easily to (39) by using (7) and dividing both sides by 3.
The remaining identities, (40)-(48), are derived using similar techniques.

4. Quadratic, Cubic, and Quartic Identities

An application of the T-matrix is in deriving and proving the quadratic
identity

2 2 2 _

(49) Mo+ My + M+ 2M(M, ) + M, o) =M, .

Proof of (49): By (16), we have
Monio Nowio Sopyo Mopoa Mpvo Muvo Suvo Myt

(50) T2n = M2n+1 N2n+1 82n+l M2n—2 = M%+l Nn+1 Sn+1 Mn
Moy Noy Son Mpy —3 My Ty Sn My
Moy -1 Nop-1 Son-1 Moy-y My-1 Npoy Sp-1 My-g

Now we carry out the matrix multiplication on the right side of (50) and
equate the elements in the third row, first column on both sides of (50) to
obtain

M M + WM + S,M, + M2, =M

ntn+2 nn+l n-1 2n
which is equivalent to (49).
By equating corresponding elements in the fourth row, first column of (50),

we obtain

2 2 —
(51) M M, - M2+ MM+ ME_| F2M M, o= My .
The generalized versions of (49) and (51) are, respectively,
2
(52) W2+ 2 2+ 2u, (g Fou, )
= Mglg, o1 T up(hg, = Mg og) F (g, 5+ Hpuo3) + Mgly,
and
2
(53) Hopoln 7 Hi + HyHy-3 + Un 1 + 2“n—1“n—2

= Mglg, g T Hp(hg, g = Hou_g) + g, g+ My ) + Hghy, 5
In (52), if we let Mg = Hp = 0 and By = g = 1, we have

2 2 2

Mo+ Moo+ ML+ 2M (M, + M, 2) =M,

which is (49). By letting p =n - 1, Mg = M; = 0, u, = My = 1, and replacing =n
by n + 1 is (21), we obtain (49) also. However, (21) is not readily obtain-

able from (52) nor is (52) obtainable from (21).
1992] 15
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The same technique used in the proof of (49) may be used to find and prove
cubic identities. 1In this case, we use the fact that for the T-matrix,

(54) T3n—2 - T”‘IT”’lTn,

and again after expanding and equating appropriate corresponding terms on each
side of (54), we obtain, for example,

(55) M3y = Myyp(By = C1) + Mpyy(By = Co) + My (Fy 2 C3) + My ) (Fy» Cy)s

where F; is the first row of 771, ¢; is the £'h column of 77”71 and - is the
usual dot product of two vectors. The right side of (55) is clearly a cubic
which we do not expand completely because of its length.

The analogue of (55) for {u,} may be written in a manner similar to the way
in which we wrote (52).

We may continue using the above technique to find quartic, quintic, and
higher-ordered relations, but it is clear that one side (the side involving
powers) of the equation becomes exceedingly long and complex.

One of the oldest and perhaps best known identities for the Fibonacci
sequence is
(56) Friifoy = FZ = (1),
which was derived first by R. Simson [14]. 1In [3], the identity analogous to
(56) was found for the Tribonacci sequence. We now pursue a like identity for
the Tetranacci sequence. The simplest one may be obtained as in [3] by
considering the determinants of both sides of (16) to obtain

Myro Mpiy My My _y Myyo My_y My My 41
(57) Myyy My Mpoy Mp_p — Myyy Mpp Myoy My

My, My,_1 My_p M,_3 M, My_3 My_» M,_1

My_y My_p My_3 My_y Mpoy My My-3 My_p
Mytrp Npyo Spez Muyy 111 1"

_ Mus1 Npy1 Sner M = _ 1 0 0 0 = (_1)n+l

My ‘N, Sy M, 4 0 1 0 O ’
My_1 Npy-y Sp-1 My-»p 0 0 1 O

We shall not expand the left side of (57), but it is clearly a quartic
consisting of 24 terms.

We now consider some generalizations of (57). First, we rewrite (57) for
the sequence {u,} to obtain

Hut2 Hu4l Hn Hp-1 Mg M5 Hy M3
(58) Hue1  Hn Hn-1 Hu-2| = -y s Hae Mz Mol

Hn Hpo1 Hu-o Mg My Mg Hp By

Hp-1 Hp-2 Hu-3 Hy-y Hz My My Ho

a quartic expression independent of » except for sign.

Proof of (58): By (15), we have the following matrix equation:

Mupo Hpsl Hno Hpog L O L BT T T T
(59) Husl  WHn Hpo1 Hpep | o | 10 000 s My Mz Hp
Mo Myl Hpop Hpo3 0 1 00 My M3 Hp o Wy
Mol Hpo2 Wpo3 Wy 00 10 M3 My Wy Mg

Now, by taking determinants of both sides of (59), we have (58).

As a special case of (58), consider the sequence {0,} where ag = a; = 0,
a, =1, a, = o, arbitrary. The, determinant on the right side of (58) then
becomes
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4(a +1) 2(a+1) a+1 «
20+ 1) (o +1) a 1
(60) (0 +1) o 1 0’
a 1 0 0
which is a quartic polynomial in o. Consequently, an algebraic integer o = B

exists, which makes the determinant (60) zero. Thus, for any »n, the sequence
{0,} whose initial terms are 0, 0, 1, B, where B is chosen so as to make (60)
equal 0, always results in

Ope2 %n+l On %y -1
%pt1 On %p-1 %n-2| = 0.
Oy O,_1 Oyu_p O,_3
-1 %n-2 Gn-3z O%uoy

To obtain a more general form of (58), we first observe that the quartics
on the left side of (57) and (58) involve seven adjacent terms in the sequences
{M,,} and {u,}, respectively. We use the technique in the proof of (58) along
with (37) to show that the terms of the quartic may be "spread out," so to
speak, and that the number of terms involved may be as great as 16. Specifi-
cally, we prove the following identity:

Hn+m+r Hn+p+r Hn+g+r Hn+r

(61) Hptm+s Hn+p+s Hn+g+s Hn+s
Ho+m+t Hn+p+t Hn+g+t Hn+e
Wy m Hu+p Hn+gq Hn

My, My Ma_p||Hm+3 Fp+3 Hg+z M3
= (_l)n—l M%+l Ms Ms—l Um+2 Up+2 Uq+2 Hy ,
Mgy, My My_p||Fm+1 Fp+l Hg+1 M1
Hm Hp Hg Ho
like (58) a quartic expression independent of 7 except for sign.

Proof of (61): By (37) and (20), we have the following matrix equation:

Ho+m+r Hu+p+r Hn+g+r Hutr

(62) Witm+s Hn+p+s Hn+g+s Hn+s
Hu+m+t Hn+p+t Hun+gq+tt Hu+t
Hn+m Un+p L\n+q ~ - HUn
Mpyo Npyo Spyp Mpig 1 Wit m Hu+p Hn+q Uz
- Mgyo Nevo Sgin Msy Hpem-1 Hp+p-1 Hu+g-1 Hn-1
Mepo Nego Sevn Mpsn Hp+m-2 Hun+p-2 Hn+g-2 Hn-2
L1 0 0 0 JL Wn4m-3 Hn+p-3 Hpsq-3 Hn-3
[ M i s Mperp |1 1 1 1" 3w u u i
r+2 r+2 r+2 r+l m+3 p+3 q+3 3
= | Mgyo Ngyn Ssyn Msyl 1 000 Wn+2 Mp+2 Hga2 Mo
Meyp Niyo Spyp Mg 0 1 0 0 Hn+1 Mp+1 Hg+1 ™1
|1 0 0 0 0 0 1 O U, Up Ugq u,

We take determinants of both sides of (62) to obtain (61) since, by using (5)
and (6) and well-known determinant properties, we can show that
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Mr+2 Nr+2 Sr+2 Mr+1

Mpyq1 M, M,_
Ms+2 ]Vs+2 Ss+2 Ms+1 = MP L M:r’ Mr L
M N S M s+1 s s-1]-.
t+2 t+2 t+2 t+1 M M M

1 0 0 0 t+1 t t-1

For the sequence {M,}, (61) becomes.

Mot m+r Mn+p+1’ Mn+q+r Myt

Mpyy My Mp_y||Mpyy My Mp-y

(63) Mn+m+s Mn+p+s Mn+q+s Mn+s =(_1)n—1 Ms+1 Ms Ms—l Mp+l Mp Mp-l
My vm+t Mn+p+t Mrz+q+t My + ¢ M M ¥ i M Y

Myt m Mpvp My q M,, t+1 t t-1 q+1 q q-1

Several special cases of (61) are worth mentioning. First, let g = ¢, s =
p=2t, m=1r = 3t, n arbitrary, to obtain

Hovet  Hu+s5t Hn+ur  Hn43g
(64) Hnese  Hpsue  Hu+3e Huaoe
Hpsue  Hna3r  Huaoe Mo+t
Hui3e  Hu42e Hure  Hn

H M u H
M3t+l M2t+l Mt+1 3t+3 2t+ 3 t+3 3

= (-1)"" 1My, My, My ﬁ3t+2 ﬁ2t+2 Et+2 :jz ,
M3 1 Moy -1 My 3t+1 2t+1 t+1 1
Mg Hog 37 Ho

which displays an interesting symmetry.
Another special case of (61), which displays even greater symmetry, is ob-
tained by letting g = ¢t =#un, p =s = 2n, m = r = 3n. We then have

W7, Hen Hon  Hyy
(65) Hon Hon  Hun M3y

W5y My, Mgy Hoy

Hyp  H3p Hyy Hy

u u u u
M3pe1 Mopi1 My 1‘l3n+3 u2n+3 11n+3 u3
= (-1)»-! M3, My, M, 3n+2 2n+2  Fn+2 21,
My M, | M, H3n+1 Housrl Hu+l M
" " U3y Hop Hn Ho

Note how all terms in the determinant on the left of (65) are »m units apart,
whereas those on the right occur contiguously in groups of three or four, and
the groups are n — 3 units apart.

5. Concluding remarks

Many number-theoretic properties for the Fibonacci sequence quite expectedly
do not extend to the Tetranacci sequence. However, the following divisibility
properties hold:

(66) Ms, 1 = Ms,, = Ms,,7 = 0 (mod 2),
(67) Ms, 5 = Ms,4p = 1 (mod 2),

(68) Ms, = Ms,,1 = 0 (mod 4),

(69)  Ms,_, = 1 (mod 4).

Proof of (66) and (67): We consider the sequence {M,} (mod 2) and display the
results in the following table:
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n 0 1 2 3 4 5 6 7 8 9

M, (mod 2) 0 0 1 1 0 0 0 1 1 0

From the table, it is clear that {M,} (mod 2) starts to repeat after five
terms and, since the pattern of zeros and ones will then continue to repeat in
the same order, we have

ML‘_ = M5n_1 =0 (mod 2), M5 = Msn =0 (mod 2), M6 = M57L+1 =0 (mod 2),
M3 M5n—2 =1 (mod 2), M2 = M5n+2 =1 (mod 2).

Since by (66), Ms,, 1, Ms,, Ms,,1 are even, it is clear that three arbitrary
adjacent terms of the Tetranacci sequence may have greatest common divisor
greater than one. However, we can show that the greatest common divisor of

Mys Myy1s Myyos Myyss

any four consecutive terms of {M,},is one.

This paper, quite clearly, is not intended as an exhaustive treatment of
properties of the Tetranacci sequence and generalizations. Some fundamental
identities and sufficient other results and techniques for proving them are
given to indicate the rich and remarkable nature of this sequence and generali-
zations.
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