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1. Introduction

Let k and ¢t be fixed positive integers and let Gk t(”)’ n=0,1, 2, ..., be
a sequence of integers defined by

n if0<sn<t-1

(1) GE,t(”)z{ )
n—Gk,t(n-t) if n

kth

v

t,
where Gi,t denotes the
Gy, (M) = Gy, ,(m) and Gf ,(m) = Gy, (GE ¢ (m))

for ¢ > 1 and for any m 2 0.

iterated composition of G ., i.e.,

This sequence is a generalization of some which have been investigated earlier.
P. J. Downey & R. E. Griswold [1] (and later V. Granville & J. P. Rasson [3])
proved that the solution of recurrence (1) in the case kK = 2, t = 1 is given by

(2) Gy, 1(n) = [(n + Lul

for any n = 0, where p = (-1 + /E)/Z and [ ] denotes the integer part function.
In [1] a similar formula is shown for Gz’t(n) with arbitrary ¢t = 1.

Recently B. Zay [6] has shown some properties of the general sequence for
any k and t. Among others he proved that Gy, +(n) is defined for each nonnega-
tive integer n, the sequence is monotonically increasing, and that the general
case can be traced back to the case ¢ = 1 by

e () a0 s () - o [+ 1)

Gk, ¢ (n) =
n nl . n n
oG ([3]) +n - e 7] ae o ([g]) = e (34 1)
for any m 2 0. So it is enough to investigate the sequence with ¢ = 1. Fur-
thermore, we can suppose that kX > 2 since the case k = ¢t = 1 gives the sequence
Gy,1(n) = [(n + 1)/2], which can be considered as a trivial case.

Throughout this paper, k will denote a fixed integer with k > 2 and, for
brevity, we write G(n) instead of Gy, 1(n).
In general (if k > 2) the terms of the sequence ((n) cannot be expressed

similarly as in (2). In order to see it, let us suppose that there is an inte-
ger r and a positive real number w such that
(3) Gn) = [(n + r)w].
Then
(4) lim Gn) w.
"> o n
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On the other hand, by (1) we have
G _ Gk(n - 1) Gl - 1) G2(n-1) Gn-1) n-1
n Glnm-1) G20 - 1) Gn - 1) n -1 n

bl

therefore, Gi(n)

G(G*"Y(n)) and (&) imply the equation
w=1 - wk,

So w is the only positive real root of the equation z* + z - 1 = 0. But it can
be checked by numerical calculation that, in the case k = 3, equation (3), with
any integer »r, does not hold for all n. Namely, in this case, we have w =
0.6823..., G(2) = 1, G(18) = 13; thus, from

G(2) =1=1[(2+ r)w] and G(18) = 13 = [(18 + rw],

r <1 and r» > 1 would follow, respectively, which is impossible.
Thus, (2) really cannot be extended for any Xk > 2. But we shall show that
(4) holds for any k.

Theorem: For any integer Kk = 2,

1im G _

N> o

5

where w is the single positive real root of the equation x* + 2 - 1 = 0.

We note that the Theorem also holds if ¢ > 1 or XK = 1, which follows from
the results mentioned above.

2. Auxiliary Results

For the proof of our Theorem, we need the following lemmas.

Lemma 1: For any n > 0, we have

(5) Gn) = Gn - 1) + ¢,
and
(6) Gk(ny = Gk(n - 1) + ¢},

where €, and ¢, are 0 or 1.

Proof: Equalities (5) and. (6) hold for n = 1 and n = 2 since, by the definition
of the sequence,

G(0) =0, G*(0) =0, G(1) =1, G(2) =1, GK(1) =1, ¢*2) =1
for any kK 2 2. Assume that m = 2 and (5) holds for any n < m, i.e.,

Gn) = Gn - 1) + ¢,

for any » with O <»n < m and ¢, = 0 or 1. From this G(n) < n < m also follows
and so, by the assumption, we get
GZ(n - 1) if g, = 0
G(G(n)) = G?(n) = {Gz(n S+ ife, = 1,
where ) = 0 or 1. Continuing this process,
(7) Gk(n) = G*¥(n - 1) + ¢! (& =0 or 1)

follows for any 0 < n < m. By (1) we have
Gm) =m - G¥(m = 1) and Gm+ 1) =m+ 1 - ¢X(m)

from which, using (7), we obtain
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G(m + 1) - Gm) = 1 = (G¥(m) - 6¥(m - 1)) = €,,1 (€ps1 = 0 or 1).

Thus, (5), (7), and (6) also hold for mw = m + 1.
From these, the lemma follows by mathematical induction.

Lemma 2: Let {n;}]_, be a sequence of positive integers such that
Gny) = ng

for any 7 > 0. Then
Ny =Ng-1 t ng_p - €y

for any < 2z k, where ¢; = 0 or 1.

Proof: By the assumption of the lemma, using Lemma 1 and the definition of the
sequence G(n), for any 7 2 k we have

ng_1 = Gng) =ny; - Gy - 1) = n; - Gk(ni) + e/

ng - Gk_l(ﬂi_l) + E-Zi, =n; - Gk‘z(ﬂi_z) + Ei, = eee
=n; - G(ni‘k'{-l) + Ei' =n; - n;_ + Ei”
where eg = 0 or 1. The lemma follows from this assertion.

Lemma 3: Let {n;}°_, be an increasing sequence of nonnegative integers satis-
fying the recursion

ng =ngop tngox - gg (22 K),

where k > 2 is a fixed positive integer and e; = 0 or 1. Define a kt"-order
linear recurrence sequence {u;} of integers by u; = n; for 0 << < k - 1 and

Up = Up-1 t Ui-p

for ¢ = k. Further, let {F;} ., be a sequence of natural numbers defined by

Fo = F1 = Fr-1 =1 and

Fi = Fi_l + F’Il—k (7; = k).
Then :

ng = u; — §;
for any 7 2 0, where 0 < §; < F; - 1.

Proof: For 0 <7 <k - 1, the lemma evidently holds with &; = 0. If < = k and
n; = uj - &; with 0 < 85 < F; - 1 for any 0 < j < ¢, then

ng = Ng-1 ¥ Ng_p — &g

= uj-1 tug-p = (S + 8 +eg) = up - 8y,
where
OS6i=6i—l+6i—k+Ei SFi—1+F'_k_2+€1j SFi—l,
since the §;'s are integers. The lemma follows from the above by mathematical

induction on <.

Lemma 4: Let {v,},_, be a k'P-order linear recurrence sequence of positive
rational integers defined by the nonzero initial values vy, Vi, ..., Vgx-] and
by the recursion

Un = Up-1 + Up-g

for n = k. Denote by aj, 0y, ..., 0r the roots of the characteristic polyno-
mial xk — x*~! — 1. Then the terms of the sequence can be expressed as

(8) U, = apaf + a,ay + --- + qap (n 2 0),

where the a;'s (£ =1, 2, ..., k) are elements of the number field generated by
Ops Ops «s.5 Of OVeEr the rationals.
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Proof: This lemma is a special case of a more general well-known result, so it
is not necessary to prove it here.

Lemma 5: Let {v,},_, be the linear recurrence sequence defined in Lemma 4. If

0<z<
then there is a real number ¢ > 0, depending only on the characteristic poly-
nomial of the sequence, such that

0 < vy = mink(vi) and |u1| > I“il for 2 < 7 < k,

(9 lai| > ¢ - v,
where a; is defined by (8).

Proof: Ferguson [2] as well as Hoggatt & Alladi [4] proved that the roots of
the polynomial xk - zk=1 - 1 are distinct and that there is a dominant real
root o] with the largest modulus; thus, we may suppose that ‘“1[ > I“i' for 7 =
2, «o., k.

By (8), for the a;'s, we have the system equations:

ay + ao + e+ oa = Vg
ajoq + ajdn + oeee +oagpoyg = vV

.
.

I

k-1 k-1 k-1 — .
ajoy + a,0y, + e + Q; Oy Vp-13

thus,
Dy
(10) ay = Wk
where
1 1 L. 1 Vg 1 vee 1
OLI 0(42 e O(.k Ul 0,2 PR O(.k
D = |a% aZ ...af |, Dy = |v, ad ...af |,
k-1 k-1 k-1 ) k-1 k-1
af oy ceeoag Vo1 o3 ceeoap

and D # 0 since the a;'s are distinct. The determinant D; can be written in
the form

k . .
(ll) Dl = Z (—-l)z_lvi_l . D(t)’

=1
where
1 ce. 1
%) oo e Otk
@ - | i-2 i-2
D a5 17
7 7
al ce. ol
k-1 k-1
as ... af
is a (k - 1) x (k = 1) determinant rejecting the first column and the ith row
from D;.

It was proved in the lemma of [5] that
(12) D' =Dy.S,_; for any 1 < i < k,
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where
1 e 1
Oo cee Qg
cxé‘z ali“z
is a (k - 1) x (k - 1) Vandermonde determinant and Si_; is the elementary sym-

metrical polynomial of degree k - < of variables op, ..., a3 if Xk = ¢ > 0, and
Sp = 1. It is known that for the coefficients of a polynomial

b(x) = bgx™ + b1z 1 + ... + b,

we have

bj = (-1)7beS! (1 =4 <n)
where

50 =2 Bi Bi, -+ By
is the elementary symmetrical polynomial of degree j of the roots By, ..., B,
of b(x) (the sum runs over the distinct %, <7, < --. < 7; combinations of 1,
2, ..., n). Since Sy, Sy, ..., Sg-1 are the elementary symmetrical polynomials

of ay, ..., aj of degree 1, 2, ..., k = 1, thus §; + a;, Sy + S0, .., Sp-1 +
Sg-p01, Sg-107 are the elementary symmetrical polynomials of aj, ap, ..., oy of
degree 1, 2, ..., k - 1, k, respectively. So, for the coefficients of the poly-
nomial xk - 2¥71 - 1, we have

-1 = -(5; + o1)
0= 32 + Sioq

(13)
0 = (-D)*1(Sp_1 + Sk-pa1)
-1 = (-1)k - Sg_qa;.
Since a; is real, a; > 1, which implies that Sy = 1 - a; > 0. But, from this,

S, > 0 follows, and contiuing this process, by (13), we obtain the inequalities
(14) So; >0 (0 €27 < k-1)
and
(15) Sprp1 <0 (1220 +1<k-1).
Finally, by (11) and((lZ) we get
Dy = Do(vgSk-1 = V1Sk-2 + -++ + (-1)*71v,_180)

and, by (14) and (15), using the condition 0 < vg < v; for 1 < ¢ <k -1,

k k
© 2 V-1t
i=1

21| = 1Dg - > Sk
follows. By (10), this implies the lemma.

Sk-z] > vo+ Do

=1

3. Proof of the Theorem

Let N be a sufficiently large positive integer and define an integer m by

3 log WV
"= 2+ 1log 3
([ ] is the integer part function). Let ng, 715 «..r 7
numbers defined by

n be a set of natural

(16) Ny =N and n;-7 = G(ny) for 1 <7 < m.
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From Lemma 1 and its proof, it follows that G(n) < n for any n > 1, and so
n0<n1<...<nm=]\7

for NV sufficiently large so that ng = 1.

We show that there are no three consecutive equal terms in the sequence
G(n). For if

Gn) =Gn+1) =Gn + 2),
then, by the definition of the sequence,
(17) n-6G*m-1)=n+1-6¥n) =n+2-G¥n + 1)
would follow. But G(n) = G(n + 1) implies that Gkn) = Gk(n + 1) and so, by
(17), we would obtain the equality n + 1 = n + 2, which is impossible. Thus,
Gn + 2) 2 Gn) + 1 for any n = 0, and so

(18) G(n) =2 <n.

W=

By (16) and (18), we get
N=n, <3Gy =3*n,-1 =32« Gnyp-1) = 3%2<n,9 < ... <3"n,

which, by the definition of m, can be written in the form

(19) ny >£2 /I—V.

Z 3n
By Lemmas 2-4 and their notations, using (16), we obtain
_ -1 m-1 _
(20) G My_y _ Upoy = Spoy o] A e+ g0 Sm-1
N Uy = Op ajal + oo + qayp - Sy
a. /o m=1 a. /o m=1 1
2(%2 k (%% m-1
R cee + —{-— - =
_1 ! a1<°‘1> ot al<°‘1) ay Sn1/q
a1 Ay [A\T Qg [0, \™ )
1+ —§<—3) + eee 4 —5<—k) .« 8,/0]
a1\* a1\%
By the proof of Lemma 5, it follows that there are complex numbers bj, by, ...,

by > which depend only on the a;'s (¢ = 1, 2, ..., k), such that
k-1
a; = Z byu;
=0
and so, using that |a;| > ¢+ uy by Lemma 5,
k-1
2 biu;
=0

c Uy

i
ay

(21)

follows. But u; =n; for 2 =0, 1, 2, ..., k =1, n; <ng_-y for 0 <7 < k - 1,
and by (18) n;/n;-1 < 3 for any 7 > 0; thus, from (21),
Nr-1 ny nz Nr-1

no mn Ng-2

%

(22) < b Sb,3k~1=B

follows for 2 < 7 < k, where b and B are positive real numbers which do not
depend on m and the n;'s. Since |aj| > |a;| for 2 < 2 <k, and m > » as I > =,
so by (22),
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-1 m
ai (o \"TH L agfag\" .
(23) %ii ET<aI> kiﬂ a;(g;) =0 for <=2, 3, ..., k.

On the other hand, by Lemmas 3 and 4, we get

- n n az\"
0 <6, <F, =cjay + G0, + eee + ckak = clal(} + 22201<ET> )

for any n 2 0, where the ¢;'s (¢ =1, 2, ..., k) are complex numbers which are
independent of #,

lim(a;/ay)™ = 0,

N> o
and it can be easily seen that ¢; # 0. From these, it follows that there is a
real number C > 0, depending only on the characteristic polynomial of the
sequence {F;}, such that

6pn

o7

< C for any n 2 0.

However, by (19) and Lemma 5,

lay| > couy=ceng 2c- Vi

and so
1 Sp- 1 8
(24) lim( . ,’:_}) = lim( . 2) = 0.
N+ o al Otl N> oo a]. OLl
From (20), (23), and (24),
G(N) 1
lim —— = —
IV—»I: n o]

follows, where a; is the single positive root of the equation xk- k-1 -1 = 0.
But, if o is a root of the polynomial xk - x¥~1 - 1, then 1/0 is a root of zk +
x - 1, thus 1/a; = w and the theorem is proved.
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