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1. Introduction

Consider the nonhomogeneous recurrence relation

K .
(l-l) Gn = Gn—l + Gn_z +j=ZOOLjﬂJ

with
G0=1;G1=l.

In [1], Asveld expressed (, in terms of Fibonacci numbers F, and F,_; and in

the parameters ap, a1, ..., 0. He proved that

- ®) (€2) (» @)
(1.2) G, = (1 - GO )E, + (—Gl + GD YE, 1+ G
where Gém is a particular solution of (1.1).

In this paper, we generalize this result in two ways: First, we generalize
Asveld's result by taking the second-order recurrence relation as

T

k .
= PTay + QTup + ) 8.7
with 7=0

T0=a; T1=b.

Second, we prove similar results for the third-order and the rth-order recur-
rence relations; cf. also [6].

In Section 2, we prove the results for the generalized second-order recur-
rence relation. 1In Section 3, we prove the theorem for the third-order recur-
rence relation. In Section 4, we mention the results for the rth_order recur-

rence relation.

2. Generalized Second-Order Relation

Let the second-order nonhomogeneous recurrence relation be given by

k .

(2.1) T, =PT,_1 + QT,_5 + ;ogjm
with 7

TO = as Tl = p.
Let the homogeneous relation corresponding to (2.1) be written as
(2.2) S, = PS,_1 + Q5,5
with the same initial conditions as for 7,, viz.,

SO = a, Sl = b.

Whenever necessary, we denote the sequence S, with the initial conditions
Sgp=a, Sy =b as S,(a, b). It is well known that the solution of (2.2) is
given by
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(2.3)  9,(a, b) = aZE—OG[(QP = BY (o - a}) - a(apt! - apthy]

where o; and ap are distinct roots of the characteristic equation of (2.2); see

[5].

Note that
(2.4) a] + ap = P; a0y = ~4.
Also,
1
(2.5) S,(1, 0) = H[P(OLT - OLZ) - (OL’]7_+1 - 0¢727-+1)],
=____1_~. n o _ n
(2.6)  5,(0, 1) oy = al[al azl,
and
1
(27 5, 1) = g HE - DG - ) = (afh - ogth].

Theorem 2.1: The solution of (2.1) is given by
Ty = Sp(a, b) = 5,(1, 07§’ - 5,0, TP + P,

where S, (a, b), S,(l, 0), and S5,(0, 1) are given by (2.3), (2.5), and (2.6),
respectively, and Tép)is a particular solution of (2.1).

Proof: The solution of (2.1) is given by

7, = 7" + 1P,

where Tg” is the solution of (2.2) and TS” is a particular solution of (2.1).
Now

(2.8) T,

il

n n (P)
oy + cyop + VSN

where
T0=Q;Tl=b.

Therefore,
<3 + Co = a — T(()p),
(2.9) (®)
C']_OLI + Cpolyp = b - Tl .

Solving (2.9) simultaneously, we get
(@a=-TMa, -b+ TP (@-1E -0 -b+ 1P

‘17 Gz = 01 Gy = 0
Hence,
a (19— q) + ap - b - PP 4+ 7P
145 0 1
(2.10) cy = Gy - O] .
Similarly,
T TP+ a) - aP + b+ priP - P
(2.11) Cop = .

Gp = O]
Thus, by using (2.10) and (2.11) in (2.8), we have

1

T o= —]
Gy = 01

n

(@P = b =PI + 1) (of = o)
- (a - T (el - ozt 4 1P
_ ﬁ{[(alj S B)(af - o)) - alertl - ot
- [P(a? - of) - (al*l - aztly]rlP
S CICHIEIOR L R A
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By using (2.3), (2.5), and (2.6) we finally obtain
(2.12) T, = 5,(a, b) - 5,(1, TP - 5,00, NI + 1P

Remarks:
(1) Note that, if a =1, b=1, P=1, @ = 1, (2.12) reduces to Asveld's
result given by (1.2). Here we use the fact that
S, (1, 0) =-F,_1 +F, =F,_», 5,00, 1) =F,_1, S,(1,1) =F,.
(2) To get a complete solution of (2.1), let the particular solution Zﬁp)be
given by .
= 3 At
=0

Then, from (2.1) we get

. k . k . k .
2 Ant =Py A (-1 - QA (n -2 - 3 gnt =0
=0 =0 =0
or
k . k
_2: A;n® __2:
=0 =0
For each 7 (0 < 7 <

7 . k
( 3 Ai(z>(—l)“1(P + in-’l)n’l> - Y g.nt = 0.
£=0 i=o "
k), we have
k

(2.13) A; - 2:‘YimAm -8, =0

m=1
where, for m 2 %,

Yo = (1) 05 + @279

From the recurrence relation (2.13), 43, ..., Ap can be computed where 4; is a

linear combination of Bys «evs By To get a more explicit solution as in
Asveld [1], we put

k
Ay = -2 a;;8;
Jj=1
where a;; are as defined below. Then we get the following solution for (2.12):

k
T, = Sp(a, b) + 5,(1, 0)AY + 5,(0, L)AL —j;osjrj (n),

where x X ; ; |
)\O = - BJ‘CZOJ’: )\]]'( = z BJE aij, and pj (n) = E aij”l-
J=0 J=0 =0 =0
Note that .
1 J ) )
Yig =P+ & ag = P+q-1 and a;; = - 30 ¥4, J > T

m=1+1

(3) 1f a =2, b=1, P=1, and § = 1, the sequence S;(a, b) reduces to the
Lucas sequence L,. Then (2.12) reduces to
T, =L, - TP, + (7 - 1%)F, | + 1P

(4) We are grateful to the referee for pointing out references [6], [7],
and [8]. It should be noted that our results are more general than those in
[6]. One can also prove results similar to those in [6] and [7] without much
difficulty.
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3. Third-Order Recurrence Relation

Let the third-order recurrence relation be given by
k )
(3.1) T, = PiT,_1 + PyT,_o + P3Tn_3-+jz%8jnJ.

Let the homogeneous relation corresponding to (3.1) be written as
(3.2) Sy = P1Sp-1 + PoS,_p + P3S,_3.

Denote the sequence 5, by S%, S%, 53, when

(3.3) Sy =0, Sy =1, Sy, =Py,

(3.4) Sg =1, 5 0, S, = Py, and

(3.5) Sg =0, 8§ =0, S, = P3,

1

respectively.

Denote the sequence 7, with initial conditions the same as (3.3), (3.4),
and (3.5) by TL, T2, T3, respectively. If aj, ay, az are distinct roots of the

characteristic equation corresponding to (3.2), then

= n n n
5, = cqja] + cyaf + ejog

with
(3.6) Gy + 2%} + Qg3 = Pl; Gilo + Qo3 + ajdgy = _PZ; Gqliplizg = Pg.

Using standard methods, we obtain

1
st o= " Py - ay) - ooy - ap) + aftl(e, -],
1
52 = flof* (e - a) - af*l(af - o) + o0 - oD,
P
53 = f[a?((xs - a,) - al(ay - ay) +al(a, - apl,
1 1 1
where A= ] ay ay ag | = (ag - ay)(ag — ap)(ay - ay); see [4].
2 2 2
(¢4 (¢4 o
1 2 3

By making use of (3.6), we easily get
52 = -p1St o+ sk, S2=Pysti .
For the sake of convenience, let Ti be denoted by 7, in what follows.
Theorem 3.1: T, is given in terms of S} by
T, = -P,7®Psl , + (2 0P - st |+ (1 - rP)s) + TP

n

2

Proof: Let Iﬁh)be the solution of (3.2) and Tﬁp)be a particular solution
(3.1). Then

(3.7) T, =1+ 1P

where

(3.8) Tim = cja + ¢yl + c303
with initial conditions

TO = O, Tl = l, T2 = Pl’

of
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Using these initial conditions, we have
= _mP
ey + e, + cg =-T7,
_ 7P
1 272 1 Tl 2
2 2 2 = _ ()
ciaf + cyaf + cj0% Pl T2 .

Q
Q
+
Q
Q
+
Q
w
Q
w
[l

Solving these equations simultaneously, we get

]

[o} - Q
3 2(_p®

e, 2 Fayay = (1= T (ay, + ag) + (P) - T§)]

0, — O P
- 2|_23 p(® _ _ (P> _ _ (D
= : { o Ts (1 ™) (P ap) + Py T, }.
Similarly,
Oy = Q P
_ o3 1 3 o o _ _ @
cy —-————K———{ oy Ty (1 Ty (P, a,) + Py T, }
and s
%2 T M s Lm () ®
e, = A ~ 33 Ty = (L =T @) —og) + Py = T\
Hence, substituting for c;, ¢, c¢3 in (3.8) and simplifying we get

T = =PI Ta Mg ~ ap) = 0 My - ap) + 05 e, - ap)]
-P, (1 - T%p))[a’f(u3 -0y - ug(u3 - ul) + ag(uz ~ ul)]
+ (1 - I [af (ay - ay) - af*l(ay - a)) + oftl(a, - )]
+ (P - Tgﬂ)[a?(a3 - uz) - ag(u3 - al) + ag(uz - al)]}/A

_ (Pal 2yt (P) ¢l (Ph <1
= ‘PaTO Sn_2 - Pl(l - T1 )Sn_l+ (2 - T1 VS, + (Pl -7, )Sn_l.

On further simplification, (3.7) reduces to

(3.9) 7, = -P,rPst_, + (P, 1P - 7)s)

n

(Pl )
2 +<1—Tl)5n+TVL’

which is the required result.

1

Remarks:

(1) 1£f Py = 1, P, =1, P3 =0, and Ty =0, 7} =1, (3.1) and (3.2) reduce
to the second-order relations (2.1) and (2.2) with P=¢ =1 and a = 0, b = 1.
With the above values of Py, P,, and P3, T, given by (3.9) reduces to

7= (0P - 1P)sl o+ - rP)sl o+ o,

1
We verify whether this equation reduces to (2.13) with a = 0, b = 1. Now
® _ n _ _ o) _ )
T T2 =T Ty T, + 1%,
since T, = 7MW + 7M.  Also,
= - (n) — m() (h)
T1 = TZ =1 and T2 = Tl + T0 .
Therefore,
® _ @ - _p) )y _ m(h) _ _ m® — _p(p)
T T "+ Ty = TO = TO Ty = =Ty
since TO = 0. Thus,
(3.10) 1, = =15l .+ (1 - 7Pt + 1P,
Note that here S% = 5,00, 1). Now
5,(1, 0) = 5,.1(0, 1).
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Hence, (3.10) reduces to
T, = =5,(1, )1+ (1 - r{Ms, (0, 1) + P,
which is identical with (2.12).
(2) On similar lines, we can prove the following:
2 _ m(Py el (P) _ m(Phcol ).
T2 = P,(1 - TP)sk_, + (py7iP + P, - TiP)s) | - 15l + 1P,
3 - _ (Pl () _ p(Py el _ (P (r)
Ty = -P,Ty’S:_, + (P17 + Py = 13751 - miPsl + 1P,
(3) As in Remark (2) of Section 2, taking

k k

P - Z ; - Z
Tn = ) Ainl and Al = = a’I,J BJ’

1=0 Jg=1

a;; as defined below, the sequences T% can be expressed as

K
1 = Ocl _ 1 2ycl 1 1 _ o
Tl o= PoAJSE_, + (-Piai+AQ)Sh o+ (1 + A))s) .ZQ)lej(n),
where . I
0 Kk ! k J 5 k J :
Ak = 2: Bjaoj’ Ay =,§: B 2: Agis Ay = 2: Bj 2: 27ag;>
j=0 Jg=0 1=0 Jg=0 =0
J ) J . .
ri(n) = 3 agnts ag; == 2 Sinlngs § > 1
=0 m=1+1
and

m . . .
Sim = () LM IRy + P27 4+ B3,
(4) Similar results as above can be obtained for Tf and T;.

4. The rth-Order Recurrence Relation

Let 5
(4.1) T, = P1Tyoy + PoTyp + «oo + Ppo1Ty iy + BaThoy +.2%)anj,
be the rtP-order recurrence relation with three sets of inilial cond
(4.2) Tw=20, for 0 sm<p =3, Tyog=1, Tu_y = P},
(4.3) T, =0, for 0O <m<pr -1, Tg =1, T,y = Py,
(4.4) Ty = 0, for 0 <m < »r - 2, T._1 = Pg3.
The homogeneous part of (4.1) is the generalized rth-order Fibonacc

Let it be denoted by S, so that
S = P].Sn"l + PZS?'L—Z + oo + PI’S?’Z—P'

n
We take the same initial conditions as in (4.2)-(4.4). Following the

as in Section 3, we can prove the following results:

1 - _ (P)el (P) ® _ »@ 1
T‘VL - PrTO Sn—2 + (Pr—ZTl e t PITP-Z Tr—l)Sn—l
() ® _ p® el 4 ...
+ (1 + PI,_3T1 4+ oee. + PITP_3 Tp—z)sn +
® _ (Pl _ m(P)cl (D).
+ (P17 I35 ey = T1 Sypp3 T 105
2 — _ (PN ol (») ®) _
Ts = P.(1 Ty )Sn_2 + (Pr—le + ... + PlTr_2 + P, TP_I)S
(2] ®» _ mp 1 ce
+ (Pr—3T1 IR PlTr—S TP_Z)Sn +

() _ 7Pyl _ 7Pl ().
+ (PlTlp TZ )Sn+r'—L+ Tl Sn+r—3 + Tn ’

and

1992]

r > 3,

itions as

i sequence.

same method

1

n-1
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3 - (Peal ») -(P) _ m(p) 1
T5 = BTy S,y + (P07 + oo + PYTT, + Py = 1075,
+ (Pp_gTim Foeel 4 P1T§?3 - r®ysl 4.
(p) N el (Pel (»)
+ (PlTl - Tép )Srz+r'—L+ - Tl Sn+r—3 + Tn °

Here we denote S, with initial conditions (4.2) by S} and T, with initial con-
ditions (4.2), (4.3), (4.4) by T&, T%, Ts, respectively.

Remarks:
(1) For r = 3, T% reduces to the result of Theorem 3.1.

(2) As in Remark (2) of Section 2, taking
k , k

7P = 3 Ant and A = - Y agiB;,
=0 i=i

the sequence Iﬁ can be expressed as follows:

1 = 0cgl 1 -2 _ -1 1
Ty = BoapS,_ 5 = (Pp_ohg + =oo + P12} TS5
- 1 _ ... - -3 -2y5l ..
+ (1 Pr—3>‘k Pl)\z + )\}Z )Sy, +
k
_p 31 2ycl lol _ .
+( Plxk + Xk)Sn+r—l+ A Sn+r-3 'ZO BJPJ (1)
where . J
5 k k J ;
Xo = 2.B5a0;55 Moo= e Yagt, =1, 2, o, e - 1
J=0 Jj=0 =0
j ; j . .
r.(n) = Z a;nts ag; == 3 Sy J > 13
=0 m=17+1
and

Sim = <Z7>(—l)”7"‘[Pl + P b e+ BT

(3) Similarly, we can write the values of T2 and TS.

(4) In [3], Asveld derived expressions for the family of differential equa-
tions corresponding to (1.1).

It is natural to ask whether such results can be proved for the rfh-order
recurrence relation. This is the subject of our next paper.
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