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First Wall [8] and subsequently a number of others (see, e.g., [1], [3],
and [4]) have examined the properties of the Fibonacci sequence modulo m. The
Tribonacci sequence modulo m was considered and a number of properties were
derived in [6]. Chang [2] briefly examined higher-order sequences modulo m.
Vince [5] considered the period of repetition of a general linear recurrence.

In this paper we list several basic results which follow when some of
Vince's results are applied to the special case of the Tetranacci sequence. We
then establish a number of additional properties. We also investigate in
detail the relationship of the period of the Tetranacci sequence modulo m to
the factorization of the minimum polynomial of the 7T-matrix defined in [7] and
given below in (2).

We consider the sequence {M,} reduced modulo m, taking least mnonnegative
residues, where

(1 My = Mpoy + Myop + My_3 + My (n 2 4), My =My =0, My = M3 = 1.

Definitions: The length of the period of {M,} (mod m), designated h(m), is the
number of terms in one period of the sequence {¥,} (mod m). A simply periodic
sequence is periodic and repeats by returning to its initial values.

We list several results found in [7] which will be required in the develop-
ment of this paper.

1 1 11 Myro Nyyo Spvz Myy
w_ |10 0 0] _ | My New1 Seer 4,
(2) (@) T 01 0 0 w Ny S, Moy |7
0 0 1 0 LMy-1 Npoy Sn-1 My
where
(3) Nn = Mn—l + Mn_z + Mn—S’
(4) Sn = M‘rz—l + M?’l—Z'
(5) (b) |T| = -1, where |T| is the determinant of T.
Myvs My Myyp My
M M M, M, _
(6) () |77 = nt2 Sntlo Un ol = (-7,
771 Mypy1 My My_y My_p
My, Moy Mp-p My-3
(7) (d) Mpap = Myyily_sug + MyyiaNp—iip + Myyi2Sp-i40 + Myoy3Mp_iy1-
< 1
(8) (e) _E%mg = (HMaug + 2M, + Myoy = 1),
=
¥
1
(9 (£) _ZOM2i+1 = 3(2Mop40 + Moy = Mppy = 2).
-

Table 1 gives values of %(m) for selected values of m.
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Table 1

[ m H 2 3 4 5 6 7 8 9 10 11 13 15 16 17 19 27 100\

th(m)ﬂS 26 10 312 130 342 20 78 1560 120 84 312 40 4912 6858 234 156OJ

Results in [5] may be applied to the Tetranacci sequence to yield the fol-
lowing theorem.

Theorem 1: The sequence {M,} (mod m) satisfies the following:
(a) The sequence {#,} (mod m) is simply periodic.
(b) If m has prime factorization m = pilplts ... pfe, then
n(m) = LeM[A(p{1), h(pi2), ..., h(pl)].
(¢) If h(p?) = h(p), them A(p?) = p* lu(p).

(d) 1f n > 0 is least such that M,,; = M, = M,-7 = 0 (mod m), and if
M,y =M, = Mgy =0 (mod m), then t = kn for some integer K.

If we examine the terms of {M,} (mod 5), we see that for s = 78 we have
Mgy = Mg = Mgy = 0 (mod 5),

but My_, # 1 (mod 5). Hence, s is not the length of the period of {M,} (mod
5). However, the occurrence of "triple zeros,” 0, 0, 0, in {M,} (mod 5) and,
in general, the occurrence of triple zeros in the sequence (mod m), is signifi-
cant in determining, among other properties, the period structure. The follow-
ing lemma states some of the results related to this phenomenon.

Lemma 1: If s > 0 is least such that
Mg.q 2 Mg = Mgy =0 (mod m),

then the following congruences are valid:

(a) MS_Z = M§+2 = 1 (mod m),

(b) Mjg-1 = Mjg = Mgy = 0 (mod m) for all j > O.

Proof: To prove (a), we use (6) to obtain

Moys Mgyp Msyy Mg Mgz Mgyp O 0
(—l)s = ITS‘ = Ms+2 Ms+l Mg Ms—l = Ms+2 0 0 0
Mgyer Mg Mgy Mg-p 0 0 0 M -2
Mg Mgy Mg Ms-3 0 0 Mg_p Ms-3
- 2 2 -
= ME ME_, = M§+2 (mod m) .

Therefore, M§+2 = +1 (mod m) or M§+1 = 1 (mod m) and the proof is complete.

In (b), we prove only that Mj; = 0 (mod m). The other parts follow simi-
larly. The proof is by induction on j. If g = 1, the result is clear. If we
assume that Mj; = 0 (mod m), we have, by (7) with =1,

MiG+De = Mjsvs = Mijeu1Msy1 + Myg Ngyp + Myg 1547 + Mjs—ZMs = 0 (mod m),
and the induction is complete.

The next theorem provides identities which involve a rather curious shift

of a factor of the subscript of an appropriate M, to a power of that M, when
the modulus is changed from m to m2.
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Theorem 2: Let h = h(m) and let k be a positive integer, then the following
identities hold.

(10) (a) My, _, = Mf_, (mod m?),

= k-1 2
(11) (b) My, y = KM; M, | (mod m*),
(12) (c) My, = kMEZIM, (mod m?),
_ k-

(13) (&) My, = KMZZIM, ., (mod m2).

We prove (10); the other parts follow similarly. The proof is by induc-
tion on k. If k = 1, the conclusion is immediate. If we assume that

My, _, = Mf_, (mod m?),
then, by (7) with ¢ = 2 and the induction hypothesis,

Mu+vn-2 = Man -2)+n = Mpp My + Myy 1y + Myy —25n + My -3ty -

k

(Myp -1 (My—p + My_3) + My oMy + My (Myy o + My -3) ]

(nod m2) & = [Myg, -y (Mpyy = My = My_1) + MEXY + My g (Myg gy = Mig = Mpg,_1) ]

- yk+l
= My_z»

m

since m divides My4,1, My, My_, and, by Lemma 1(b), m divides Myp 41> Mxps My -1-
This completes the proof.

A related property is the following:

Lemma 2: 1f p is prime and j = h(p?t) is the length of the period of {M,} (mod
pt), then

M;lz 1 (mod pt*l).

Proof: Since M;j_, = 1 (mod p?), M;_,

all s. Consequently, we have

i

1 (mod p), and thus M7 , =1 (mod p) for

p - -1 p-2
My = 1) = (M;_py = D@7, + MEZG + =oe + My + 1)

[0 (mod p?)][(L + 1 + «-+- + 1) (mod p)]
[0 (mod p?)]1[0 (mod p)]
= 0 (mod pt+l).

The occurrence in {M,} (mod m) of the quadruple 1, 0, 0, O is the signal
that the end of the period has been reached and that repetition has begun. If
the term immediately in front of the three zeros is Mg_,, where Mz_o £ 1 (mod
m), there are only a limited number of possibilities for the value of My;_»
since, by Lemma 1, we always have M__, =1 (mod m). This implies that as an
element of the finite group, Z,, the order of Mg;_, is 2, 4, or 8. We now
examine in detail the possibilities resulting from this implication.

i

i

Theorem 3: 1If s is least such that
Mgy = Mg = Mgy =0 (mod m) and My_p Z 1 (mod m),
then one of the following holds:

(a) 1If the order of My_, = 2, then My, _, = M?-z =1 (mod m) and h(m) = 2s.
An example is {M,} (mod 31), where s = 30,784 and h(31) = 61,568.

(b) If the order of My_, = 4, then My,_» = Mg_5, =1 (mod m) and h(m) = 4s.
An example is {M,} (mod 5), where s = 78 and A(5) = 312.

(c) 1If the order of Ms;_, = 8, then Mg,_» Mg_z =1 (mod m) and h(m) = 8s.

An example is {M,} (mod 89), where s 1165 and #(89) = 9320.
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Proof: The proof follows from Theorem 2 and from the fact that, if a = » (mod
m2), then a = b (mod m).

The following theorem gives further related results.
Theorem 4: 1f s is least such that
Mg_y = Mg = Mgy = 0 (mod m),
then one of the following holds:
(a) 1If h(m) = 2s, then for any r, Mp + Mpys = 0 (mod m).
(b) If h(m)
(¢) If h(m)

4s, then for any v, Mp + Mypys + Mpyos + Mpyr3s = 0 (mod m).

+

8s, then for any 7, My + Mpys + Mpyog + -

+ Mpy7s = 0 (mod m).

Proof: We prove (b); the other parts follow similarly. By repeated use of (7)
with 7 = 1, we have

Mp + Mpgg + Muyog + My,
= Mp + (MpyiMey1 + Mplgyq + Mpo1S541 + My oMy)
+ (Mo 1Magsy + Mulipgry + Mpo1S9541 + Mpn-pMpg)
t (Mpy1M3gv1 + Mpl3gp1 + Mp1S35401 + MpoplM3,)
= M. (1 + Mg_p + Moy, _o + M35_5) (mod m)
= Mu(1 + M,_, + M2_, + M3_,) (mod m)
= 0 (mod m)
since M:_z - 1=0 (mod m) and M, _, - 1 £ 0 (mod m).
Remark: The preceding proof shows that under the hypotheses of (b),
Mn,s = MpMg_o (mod m),
Moo = MyMag_p = MuM5_5 (mod m),
Mypy3s = MpMsg, o = MuMS_, (mod m),

whenever Mg, = M, = My_; = 0 (mod m).

From these congruences we conclude that whenever triple =zeros, 0, 0, O,
appear in the interior of the period rather than at the end, the triple zeros
divide the period into what we might call subperiods of equal length where the
terms in each successive subperiod are a fixed multiple of the corresponding
terms in the first subperiod; that is, the terms which precede the first set of
triple zeros.

For example, in the sequence {#,} (mod 5), we have 0, 0, 0 as the terms with
subscripts 77, 78, 79; 155, 156, 157; 233, 234, 235; 311, 312, 313. If we call
the first 78 (length of the subperiod) terms A4, then the second 78 terms are
obtained as 3 times A, the third 78 as 32 = 4 (mod 5) times A, and the fourth
as 33 = 2 (mod 5) times A. Further, we have 3% = 1 (mod 5) and the length of
the period is 4x 78 = 312.

Theorem 5: For p > 2, h(p) is even.

Proof: Let h = h(p) and use (6) to obtain

Mp+3 Mpig Mpey My Mp+3 Mpio O 0
(-1)% = | Mre2 Mpay My My_q o | Myep O 0 0

My My Mp-y My 0 0 0 My-2

My Mpy Myu_p My_g3 0 0 Mp-p Mp_3
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= 2 2 = b4 =
- MZ—ZM%+2 - Mh+2 - Mh+2

Therefore, (—l)h

1

1 (mod p).

1H
i

(mod p) and h is even.
Theorem 6: 1f p > 2 and s is least such that
Mgy = Mg 2 Mgyy; = 0 (mod p),
but Ms., £ 1 (mod p), then one of the following holds:

(a) If h(p) = 2s, then s is even.
(b) If h(p) 4s, then s is even.
(¢c) If h(p) 83, then s is odd.

Proof: We prove (c); the other parts follow similarly. If h(p) = 8s, then by
Theorem 3(c), Mf+2 = 1 (mod p), which implies that Mg+2 z (-1) (mod p). But,
from the proof of Theorem 4, Mg12 = (~1)® (mod p) also. Hence, (-1) = (-1)°
(mod p) and s is odd.

We now examine further the relationship of p to 4(p). The minimum polyno-
mial of the matrix T,

flx) =x% - 23 - 22 -2 - 1,

and its factorization over Zp determine what this relationship is. We begin by
stating a theorem that follows from more general results in [5].

Theorem 7: 1f
f@) =zt - 23 - 22 -2z - 1 = git(x)g,2 (®)g3* (@) g (x)
is the factorization into irreducible factors of f(x) over Zp, then

(a) h(p)|p°LCM[t; (p™ - 1)/(p - 1)1, where s satisfies p® 2 max o; > p°~1,
m; is the degree of g;(x), and t; is the multiplicative order of
b;(-1)™ in Zp, b; being the constant term of g; (x).

(b) If t;|(p™ - 1)/(p - 1) for some integer r, then tI*l|h(p).

We now apply Theorem 7 to the cases that arise from possible factorizations

of f(x).

Case 1. f(x) is irreducible. In this case we have m; = 4, a, = 1, s = 0,
7’;1=2,Z’=2.

Hence, h(p)IZ(p3 + p2 + p + 1) and 8[h(p). An example is p = 5, where %(5)
= 312, which divides 2(53 + 52 + 5 + 1) = 312 and is divisible by 8.

Case 2. f(x) has a single linear factor.
We then have my = 1, my = 3, a1 = 0p = 1, s = 0; tl’ tzlp -1,

h(p) |LCM[tq, to(p%2 + p + 1)]
and

ty1|h(p) and if t;|p?2 + p + 1, then t§+1[h(p).
An example is p = 3, where
flx) = (x - D@3 -2+ 1)
and h(3) = 26, t; =1, tp =2, r = 0. Then 26|2(32 + 3 + 1) and 2|26.
Case 3. f(x) has exactly two distinct linear factors.

We then have my =my =1, mg = 2, a3 = ap = a3 = 1, 8 = 0; t;, ty, tﬂz>- 1,
h(p)lp2 - 1 and if tglp + 1 for some integer », then t§+llh(p).
An example is p = 29, where
@) = (x - 7D(x - 15)(x2 - 8z + 2),
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and %(29) = 280, t; = 7, to = 28, t3 = 4, LCM[7, 28, 4+ 30] = 840, which is di-
visible by 280. Also, 7, 28, and 4 all divide 280 and are the highest such
powers.

Case 4. f(x) has exactly four distinct linear factors.
We then have my = my = m3g =m, = 1; a; = oy = a3 =0y, = 1, 8 = 0,

h(p) |LCM[ty, to, t3, ty]
and
t;lp -1 for i =1, 2, 3, 4.

An example is p = 137, where h(137) =136 and
f(x) = (x - 40)(x - 52)(x - 58)(x - 125).
All the t; = 136, so A(137)|136 and all ¢;[136 as well.

Case 5. f(x) has a repeated linear factor and two other distinct linear
factors.

Then my = mp =m3 =1, a7 =ap =1, ag =2, s =1,
h(p) |[LCM[ty, t2, t3]

and
t; | h(p).
In looking for an example of this case, we consider the discriminant of
f(x) = -563, a prime. Therefore, this case can occur only for p = 563. It

does, in fact, occur when p = 563, 4(563) = 316,406, and we have
f(x) = (x - 107)(x - 116) (x + 111)2.

Then ¢y = £, = t3 = 562 and %(563)|563 * 562 = 316,406. This is the only case,
of course, where f(x) has a repeated root.

Case 6. f(x) has two distinct quadratic factors.
Then my = my = 25 07 =0y =03 =oay =1, s =0,
R(p) |[LCM[t1(p + 1), Zo(p + 1)]
and
it n(p) if t][p + 1.
Our example in this case is p = 13, where A(13) = 84 and
flx) = (X2 + 4x - 3)(x2 - 52 - 4).
Then ¢t = ¢, = 6, with » = 0, h(13) |84, and 6|84.

These six are the only possible cases because all other factorizations of
f(x) can be shown to be untenable.
Table 2 gives additional examples.

Table 2
Roots of f(x)
h(p) in Zp Factorization of f(x) over Z

7 342 =73 - 1 5 (x - 5)(x3 + 4z2 + 5x + 3)
11 120 = (11% - 1)/122 none irreducible
17 4,912 = 173 - 1 6 (x - 6)(x3 + 522 + 12x + 3)
41 240 = (412 - 1)/7 3, 33 (x - 3)(x - 33)(x2 - 62 + 12)
43 162,800 = (434 - 1)/21 none irreducible
47 103,822 = 473 - 1 21 (x - 21)(x3 + 20x2 - Lz + 9)
67 100,254 = (673 - 1)/2 5 (z - 5)(x3 + 42 + 19x + 27)
73 2,664 = (733 - 1)/2 39, 66 (z - 39)(x - 66)(xz2 + 31x - 23)
109 | 2,614,040 = (109% - 1)/54 none irreducible
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Finally, we state a theorem which gives a number of congruences involving

sums .

Theorem 8: If h = h(m), then the following congruences hold:

h h

(a) Y. M; =0 (mod m), (e) > M3zpq = 0 (mod m),
=0 =0
h h-1

(b) M2i+1 =0 (mod m), (f) M3i+2 =0 (mod m),
=0 =0
h (h=2)/2

(¢) D My; =0 (mod m), (8) 3. Mpy; =0 (mod m),
i=0 i=0
h (h-2)/2

(d) 2. Mz; =0 (mod m), (h) >, Myipy =0 (mod m).
=0 =0

Proof: The proofs follow easily from appropriate formulas which are derived in
[7], two of which have been listed earlier. By (8) we have

h
E: Mi = %(Mh+2 + ZMh + Mh_l - 1) =0 (mOd m),
=0

and by (9) and Lemma 1(b), we have

h

1
'§%)M2i+l = 5(2Mapip + Map, = Map—y = 2) = 0 (mod m).
i=

The other congruences may be proved similarly.

A number of additional congruences involving sums of terms of {Mn} may be

derived, but no attempt is made at providing an exhaustive list.
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