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First Wall [8] and subsequently a number of others (see, e.g., [1]? [3], 
and [4]) have examined the properties of the Fibonacci sequence modulo m. The 
Tribonacci sequence modulo m was considered and a number of properties were 
derived in [6]. Chang [2] briefly examined higher-order sequences modulo m. 
Vince [5] considered the period of repetition of a general linear recurrence. 

In this paper we list several basic results which follow when some of 
Vincefs results are applied to the special case of the Tetranacci sequence. We 
then establish a number of additional properties. We also investigate in 
detail the relationship of the period of the Tetranacci sequence modulo m to 
the factorization of the minimum polynomial of the T-matrix defined in [7] and 
given below in (2). 

We consider the sequence {Mn} reduced modulo m , taking least nonnegative 
residues, where 

(1) 1. Mn = Mn.l + Mn_2 + Mn_3 + Mn_4 (w > 4), M0 = Ml = 0, M2 = M3 

Definitions: The length of the period of {Mn} (mod m), designated him), is the 
number of terms in one period of the sequence {Mn} (mod m) . A simply periodic 
sequence is periodic and repeats by returning to its initial values. 

We list several results found in [7] which will be required in the develop-
ment of this paper. 

(2) 

where 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(a) Tn 

Nn = Mn^ 

Sn = Mn. 

(b) \T\ 

Mn + 1 
Mn 

Mn-1 

Nn + 2 

N„ 

"S'n + 2 
Sn + 1 
Sn 

N„ •l Sn-

M„ 
Mn-1 
Mn-1 J 

+ M + Mn_2 

+ M„.z. 

= -1, where 

n- 3' 

\T\ is the determinant of T. 

( c ) 

Mn+3 Mn+2 Mn+1 Mn 
Mn+2 Mn+l Mn M n _ ! 
Mn+l Mn « „ _ ! Mn_2 

Mn « „ - i Af„_2 Mn.3 

= (~l)n. 

(d) Mn+p = Mn+iMp_i+2 + Mn+i_lNp.i+2 + Mn+i_2Sp-i+2 + Mn+i.3Mp.i+l. 

(e) '£Mi = \(Mn + 2 + 2Mn + « „ _ ! - 1 ) . 
i = 0 J 

( f ) E M2i + 1 - \{2M2n + 2 + M2n - tf2n_i - 2 ) . 
i= 0 

Table 1 gives values of h(m) for selected values of m. 
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Table 1 

m 

him) 

2 

5 

3 

26 

4 

10 

5 

312 

6 

130 

7 

342 

8 

20 

9 

78 

10 

1560 

1 1 

120 

13 

84 

15 

312 

16 

40 

17 

4912 

19 

6858 

27 

234 

100 

1560 

Results in [5] may be applied to the Tetranacci sequence to yield the fol-
lowing theorem. 

Theorem 1: The sequence {Mn} (mod m) satisfies the following: 

(a) The sequence {Mn} (mod m) is simply periodic. 

(b) If m has prime factorization m = p^p^1 .-. pts > then 

h(m) = LCM[fe(pfi), Hvl1), -.., Hp*')]. 
(c) If h(p2) * h{p)9 then fc(p*) = pt_ 1^(p)-

(d) If n > 0 is least such that M n + 1 = Mn = Mn_x = 0 (mod m) , and if 

^t + 1 M+ Mt-i E 0 (mod m), then t = kn for some integer k. 

If we examine the terms of {Mn} (mod 5), we see that for s = 78 we have 

Ms-i = Ms = Afa + 1 = 0 (mod 5), 

but Ms_2 t 1 (mod 5). Hence., s is not the length of the period of {Mn} (mod 
5). However, the occurrence of "triple zeros," 0, 0, 0, in {Mn} (mod 5) and, 
in general, the occurrence of triple zeros in the sequence (mod m), is signifi-
cant in determining, among other properties, the period structure. The follow-
ing lemma states some of the results related to this phenomenon. 

Lemma 1: If s > 0 is least such that 

Ms _ ]_ = Ms E Ms +1 = 0 (mod m) , 

then the following congruences are valid: 

(a) M*_2 E Ms
8
+2 E 1 (mod m) , 

(b) Mjs-l E Mjs E Mjs + l E 0 (mod m) f o r a l l j > 0 . 

Proof: To p r o v e ( a ) , we u s e (6) t o o b t a i n 

(-D£ 

= I 

« s + 3 
Ms + Z 
Ms + i 
Ms 

£+2Wf-

Ms + 2 Ms + 1 
« s + l Ms 
Ms M s _! 
« 8 - l « e - 2 

2 - A # + 2 (mo 

Ms 
« e - l 
^ s - 2 
« s - 3 

d m) . 

Ms+2 0 
0 
0 
0 
M, 

0 
0 
Ms - 2 

Therefore, ̂ + 2
 E ±1 (mod m) or M^+ J E 1 (mod m) and the proof is complete. 

In (b) , we prove only that Mjs = 0 (mod m) . The other parts follow simi-
larly. The proof is by induction on J. If J = 1, the result is clear. If we 
assume that Mjs E 0 (mod m), we have, by (7) with i = 1, 

Mu + l)s = Mj8 + s = %,+ A + l + MjsNs+l + Mjs.lSs + l + MJs.2Ms = 0 (mod m) , 

and the induction is complete. 
The next theorem provides identities which involve a rather curious shift 

of a factor of the subscript of an appropriate Mn to a power of that Mn when 
the modulus is changed from m to m2-. 
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Theorem 2: Let h = h(jri) and let k be a positive integer, then the following 
identities hold. 

(10) (a) Mkh_2 = M\_2 (mod m2), 

( I D (b) Mkh_1 = ^ f e r X - i (mod m2)' 
(12) (c) Mkh = l<M\'_\Mh (mod m2), 

(13) (d) Mfe, + 1 = kMlJzMh + l (mod m 2 ) . 

We prove (10); the other parts follow similarly. The proof is by induc-
tion on L If k = 1, the conclusion is immediate. If we assume that 

Mkh-2 B Mh-2 <m o d m^> 
then, by (7) with i = 2 and the induction hypothesis, 

% + l)fc-2 = %/z-2) + /z = % A + % , - A + Mkh-zSh + ^ - 3 ^ - 1 

r = [M^-iiM^ + Mh.3) + M^.2Mh.2 +Mh-l{Mkh.1 +Mkh.3)] 

(mod **) ) = [/^^(/^ - ̂  - ̂ _ 2 ) + Mt+2 + %-l(^/z+l " ̂  - %!-!)] 

since 77? divides Mh+i, Mh, Mh_i and, by Lemma 1(b), m divides Mkh+i, Mkh, Mkh-i. 
This completes the proof. 

A related property is the following: 

Lemma 2: If p is prime and j = h{pt) is the length of the period of {Mn} (mod 
p£), then 

MP_2 E 1 (mod pt + l). 

Proof: Since M/-2 = 1 (mod P*)>
 Mj-Z = 1" (mod P) > a n d t n u s ^/-2 E 1 (mod P) f o r 

all s. Consequently, we have 

(M/_2 - 1) = {M._2 - l)(Mf_l + Afflf + ... + ̂ ..2 + 1) 

= [0 (mod p*)][(l + 1 + ... + 1) (mod p)} 

= [0 (mod p*)][0 (mod p)] 

E 0 (mod p t + 1 ) . 

The occurrence in {Mn} (mod 777) of the quadruple 1, 0, 0, 0 is the signal 
that the end of the period has been reached and that repetition has begun. If 
the term immediately in front of the three zeros is Afs-2, where Ms-2 £ 1 (mod 
m), there are only a limited number of possibilities for the value of Ms-2 
since, by Lemma 1, we always have Ms_2 = 1 (mod m) . This implies that as an 
element of the finite group, Zw, the order of Ms-2 is 2, 4, or 8. We now 
examine in detail the possibilities resulting from this implication. 

Theorem 3: If s is least such that 

M8_l E Ms E Ms + l E 0 (mod TTZ) and Afs_2 £ l (mod w ) > 

then one of the following holds: 

(a) If the order of Ms_2 = 2, then M2s-2 = M,?_2 E 1 (mod 77?) and 7z(777) = 2s. 
An example is {Mn} (mod 31), where 5 = 30,784 and 72(31) = 61,568. 

(b) If the order of Afs _ 2 = 4, then M^s.2 E Af^_2 = 1 (mod m) and him) = 4s. 
An example is {Mn} (mod 5), where s = 78 and /z(5) = 312. 

(c) If the order of Ms_2 = 8, then Af8s-2 E ^f-2 E
 1 (mod #0 a n d h{m) = 8s. 

An example is {Mn} (mod 89), where s = 1165 and 7z(89) = 9320. 
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Proof: The p r o o f f o l l o w s f r o m T h e o r e m 2 a n d f r o m t h e f a c t t h a t , i f a E b (mod 
m2-) , t h e n a = b (mod m) . 

The f o l l o w i n g t h e o r e m g i v e s f u r t h e r r e l a t e d r e s u l t s . 

Theorem 4: I f s i s l e a s t s u c h t h a t 

Ms.l = Ms = Ms+l = 0 (mod w ) , 

t h e n o n e o f t h e f o l l o w i n g h o l d s : 

( a ) I f h(m) = 2 s , t h e n f o r a n y r , Mr + Mr + S = 0 (mod 777). 

( b ) I f h(m) = 4 s , t h e n f o r a n y P , Mr + Mr + S + Mr + 2s + Mr + 3s = 0 (mod 77?) . 

( c ) I f h(m) = 8 s , t h e n f o r a n y T, Mr + Mr + S + Mr + 2s + ° • • 

Proof: We p r o v e ( b ) ; t h e o t h e r p a r t s f o l l o w s i m i l a r l y . 
w i t h i = 1 , we h a v e 

+ Mr + 7s E 0 (mod 77?) . 

By r e p e a t e d u s e o f ( 7 ) 

Mr + Mr + S + Mr + 2s + Mr + 3s 

= Mr + (Mr + lMs + l 4- M ^ s + 1 + M 2 . _ 1 5 a + 1 + Mr-2MS) 

+ (Mr+lM2s+l + MrN2s + l + Mr.lS2s+l + M P _ 2 M 2 s ) 

+ (Mr + lM3s+l + M r f 3 s + 1 + Mr.lS3s + l + Mr.2M3s) 

E M r ( l + Ms.2 + M2s-2 + M3s-2) (mod 777) 

E M r ( l + M s _ 2 + Af*_2 + M | _ 2 ) (mod 777) 

E 0 (mod 777) 

s i n c e M^_2 - 1 E 0 (mod m) a n d Ms_2 - 1 £ 0 (mod m ) . 

Remark: The p r e c e d i n g p r o o f s h o w s t h a t u n d e r t h e h y p o t h e s e s o f ( b ) , 

M„ E M P M S _ 2 ( m o d w ) 5 

Mr+ 28 E Mr^2s-2 E ^ s - 2 (mod 777), 

Mr + 3s E MrM3s.2 E MPAfjL2 (mod 777), 

whenever Ms + 1 E Ms = Ms_x = 0 (mod m) . 

From these congruences we conclude that whenever triple zeros, 0, 0, 0, 
appear in the interior of the period rather than at the end, the triple zeros 
divide the period into what we might call subper-iods of equal length where the 
terms in each successive subperiod are a fixed multiple of the corresponding 
terms in the first subperiod; that is, the terms which precede the first set of 
triple zeros. 

For example, in the sequence {Mn} (mod 5), we have 0, 0, 0 as the terms with 
subscripts 77, 78, 79; 155, 156, 157; 233, 234, 235; 311, 312, 313. If we call 
the first 78 (length of the subperiod) terms A, then the second 78 terms are 
obtained as 3 times A9 the third 78 as 32 E 4 (mod 5) times A, and the fourth 
as 33 E 2 (mod 5) times A. Further, we have 34 = 1 (mod 5) and the length of 
the period is 4x78 = 312. 

Theorem 5: For p > 2, h(p) is even. 

Proof: Let h = h(p) and use (6) to obtain 

{-Dh = 

Mh+3 
Mh+2 
Mh+\ 

Mh + 2 
Mh+1 
Mh 

Mh + i 
Mh 

Mh-l 

Mh 

Mh-i 
Mh-2 

Ml M h-l Mh-? M, h-3 

Mh+3 
Mh+2 
0 
0 

Mh+2 
0 
0 
0 

0 0 
0 0 
0 Mh_2 

Mh-2 Mh-3 
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= Ml-2MLl =K+2 =Mh + 2 = 1 (modp) . 
Therefore , (-l)h E 1 (mod p) and h i s even. 
Theorem 6: If p > 2 and s i s l e a s t such t h a t 

Ms.1 = Ms E M s + 1 E 0 (mod p), 

but Ms_2 £ 1 (mod p) , then one of the following holds: 

(a) If hip) = 2s, then s is even. 
(b) If hip) = 4s, then s is even. 
(e) If hip) = 8s, then s is odd. 

Proof: We prove (c); the other parts follow similarly. If hip) = 8s, then by 
Theorem 3(c), Ms

8
+2 = 1 (mod p ) , which implies that M^+2 = (-1) (mod p) . But, 

from the proof of Theorem 4, M ^ 2 = (-l)s (modp) also. Hence, (-1) = (-l)s 

(mod p) and s is odd. 

We now examine further the relationship of p to hip). The minimum polyno-
mial of the matrix T, 

fix) = x4 - x3 - x2 - x - 1, 
and its factorization over Zp determine what this relationship is. We begin by 
stating a theorem that follows from more general results in [5] . 

Theorem 7: If 
f(x) = x>+ - x3 - x2 - x - I = g\l{x)glHx)gl"{x)g^{x) 

is the factorization into irreducible factors of fix) over Zp, then 

(a) hip) \psLCK[ti(pmi - l)/(p - 1)], where s satisfies ps > max a^ > p5"1, 
77?-£. is the degree of g^(x), and t^ is the multiplicative order of 
bi(-l)mi in Zp9 hi being the constant term of g^(x). 

(b) If tl\{pmi - l)/(p - 1) for some integer r, then t?+l\h(p). 

We now apply Theorem 7 to the cases that arise from possible factorizations 
of fix). 

Case 1. f(x) is irreducible. In this case we have w^ = 4, a2 = 1? s = 0, 
tx = 2, P = 2. 

Hence, 7z(p) 12(p3 + p 2 + p + 1) and 8|/z(p). An example is p = 5, where /z(5) 
= 312, which divides 2(53 + 52 + 5 + 1) = 312 and is divisible by 8. 

Case 2. /(#) has a single linear factor. 

We then have mi = 1, m2 = 3, ax = a2 = 1> s = 0; t^, £2|p - 1, 

/z(p)|LCM[t1, t2(p2 + p + 1)] 
and 

ti\hip) and if tf|p2 + p + 1, then t^+1\hip). 

An example is p = 3, where 

fix) = (x - l)0r3 - x + 1) 

and hi3) = 26, tx = 1, t2 = 2, p = 0. Then 26|2(32 + 3 + 1 ) and 2|26. 

Case 3. fix) has exactly two distinct linear factors. 

We then have mi = m2 = 1, ̂ 3 = 2, ctj = a2 - a3 = 1, s = 0; tx, t2, t3|p - 1, 
hip)\p2 - 1 and if t\\p + 1 for some integer r, then t^+l\hip) . 

An example is p = 29, where 

/(#) = ix - 7)ix - 15)ix2 - 8x + 2), 
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and 7z(29) = 280, t l = 7, t 2 = 28, t3 = 4, LCM[7, 28, 4 - 3 0 ] = 840, which i s d i -
v i s i b l e by 280. Also, 7, 28, and 4 a l l d iv ide 280 and are the h ighes t such 
powers. 

and 

Case 4. f(x) has exactly four distinct linear factors. 

We then have mx = m2 = m3 = mh = 1; ax = a2 = a3 = a4 = 1, s 

h(p) |LCM[tl5 t2, t3, ti+J 

0, 

ti \p - 1 for t = 1, 2, 3, 4. 

An example is p = 137, where 7z(137) = 136 and 

f(x) = {x - 40) (x - 52) (a; - 58) (a: - 125). 

All the ^ = 136, so /z(137)|l36 and all t i 1136 as well. 

Case 5. /(^) has a repeated linear factor and two other distinct linear 
factors. 

and 

Then W]_ = m2 = m^ = 15 ai = a2 = 1, a3 

7z(p) |LCM[tl5 t2, t3] 

tJ^Cp). 

2, s 1, 

In looking for an example of this case, we consider the discriminant of 
f(x) = -563, a prime. Therefore, this case can occur only for p = 563. It 
does, in fact, occur when p = 563, /z(563) = 316,406, and we have 

f(x) = (x - 107)(x - 116)(x + 111)2. 

Then t l = t2 = t3 = 562 and /z(563) | 563 * 562 = 316,406. This is the only case, 
of course, where f(x) has a repeated root. 

Case 6. f(x) has two distinct quadratic factors. 

Then mi - m2 = 2; cq = a2 = a3 = a^ = 1, s = 0, 

h(p) |LCM[t!(p + 1), t2(p 4-1)] 
and 

t£ + 1|Mp) if tr.\p + 1. 
Our example in this case is p = 13, where h(l3) - 84 and 

f(x) = (xz + kx - 3)(x2 - 5x - 4). 

Then tx = t2 = 6, with r = 0, /z(13)|84, and 6184. 

These six are the only possible cases because all other factorizations of 
f(x) can be shown to be untenable. 

Table 2 gives additional examples. 

Table 2 

7 
11 
17 
41 
43 
47 
67 
73 

j 109 

Hp) 
342 = 7 3 - 1 
120 = (114 - 1)/122 

4,912 = 1 7 3 - 1 
240 = (412 - i ) / 7 

162,800 = (434 - i)/21 
103,822 = 4 7 3 - 1 
100,254 = (673 - i ) / 2 

2,664 = (733 - i)/2 
2,614,040 = (1094 - 1)754 

Roots of f(x) 
in ZP 

5 
none 
6 

3, 33 
none 
21 
5 

39, 66 
none 

Factorization of f(x) over ZF 

(x - 5)(#3 + kx2 + 5x + 3) 
irreducible 

(x - 6) (a;3 + 5:r2 + 12a: + 3) 
(x - 3)(x - 33)U2 - 6x + 12) 

irreducible 
(x - 21)(x3 + 20x2 - 4 X + 9) 

(x - 5)(a;3 + 4x2 + 19a? + 27) 
(a? - 39) {x - 66)(a:2 + 31^ - 23) 

irreducible 
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F i n a l l y , we s t a t e a t h e o r e m which g i v e s a number of c o n g r u e n c e s i n v o l v i n g 
sums . 

Theorem 8: I f h = h(jri), t h e n t h e f o l l o w i n g c o n g r u e n c e s h o l d : 

h h 
( a ) £ Mi = 0 (mod m), ( e ) £ M3£ + l E ° ( m o d "0 > 

£=0 £= 0 
fe fe- 1 

(b) S M2£ + l = 0 (mod m ) , ( f ) £ M3i + 2 E 0 (mod TW) , 
£ =0 £= 0 

& (fe-2)/2 
( c ) L ^2£ E 0 (mod w ) , (g) XI M2£ E 0 (mod m ) , 

£ = 0 £ = 0 

fe (h-2)/2 
(d) X > 3 i

 E 0 (mod w ) , (h) £ M2 i + 1 E 0 (mod TTZ) . 
£= o i= o 

Proof: The p r o o f s f o l l o w e a s i l y from a p p r o p r i a t e f o r m u l a s which a r e d e r i v e d i n 
[ 7 ] , two of which have b e e n l i s t e d e a r l i e r . By (8) we have 

h 1 
£ M^ = ^ ( % + 2 + 2M^ + Mh.l - 1) E 0 (mod m) , 

and by (9) and Lemma 1 ( b ) , we have 
h i 

E % £ + l = ^ ( 2 M 2 ^ + 2 + M2h - M2h.l - 2) E 0 (mod TTZ). 
£ = 0 J 

The other congruences may be proved similarly. 
A number of additional congruences involving sums of terms of {Mn} may be 

derived, but no attempt is made at providing an exhaustive list. 
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