ADVANCED PROBLEMS AND SOLUTIONS

Edited by
Raymond E. Whitney

Please send all communications concerning ADVANCED PROBLEMS AND
SOLUTIONS to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK
HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially
welcomes problems believed to be new or extending old results. Proposers
should submit solutions or other information that will assist the editor. To
facilitate their consideration, all solutions should be submitted on separate
signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-471 Proposed by Andrew Cusumano & Marty Samberg, Great Neck, NY

Starting with a sequence of four ones, build a sequence of finite differ-
ences where the number of finite differences taken at each step is the term of
the sequence. That is,

1 2 4 8 15 26 42

Now, reverse the procedure but start with the powers of the last row of differ-

ences and continue until differences are constant. For example, if the power
is two, we have
1 4 9 16 25 1 4 16 49 121 256 etc.
3 5 7 9 3 12 33 72 135
2 2 2 9 21 39 63
12 18 24
6 6

The sequence of constants obtained when the power is two is
2, 6, 20, 70, ...,

while the sequence of constants when the power is three is

6, 90, 1680, 34650, ... .

Let N be the number of the term in the original difference sequence and M
be the power used in forming the reversed sequence. Show that the constant
term is

. 1
x, o= LDy a3, L, M= 2, 3, 4,
CADE
For example,
= 6
x(2, 3) = 53 = 90.
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H-472 Proposed by Paul S. Bruckman, Edmonds, WA

Let Z(n) denote the Fibonacci entry-point of the natural number »n, that is,
the smallest positive index t such that n|F,. Prove that n = Z(n) if and only
ifn=5 orn=12+5, for some u > 0.

H-473 Proposed by A. G. Schaake & J. C. Turner, Hamilton, New Zealand

Show that the following [l, p. 98] is eciuivalent to Fermat's Last Theorem.

"For m > 2 there does not exist a positive integer triple (a,b,c) such that
the two rational numbers r/s, p/qg, with

r=c-a, p=5b-1,
n

. n . .
s = Z pr-t, q Z az—lcn—z’

=1 =1

are penultimate and final convergents, respectively, of the simple continued
fraction (having an odd number of terms) for p/q."

Reference

1. A. G. Schaake & J. C. Turner. New Methods for Solving Quadratic Diophantine
Equations (Part I and Part II). Research Report No. 192, Department of
Mathematics and Statistics, University of Waikato, New Zealand, 1989.

Editorial comment: Please note that in the May 1992 issue of this quarterly,
the first solution (A Triggy Problem), which is actually Problem 446, was
erroneously identified as Problem 466.

SOLUTIONS

Sum Problem

H-435 Proposed by Ratko ToS$ié, University of Novi Sad, Yugoslavia
(Vol. 27, no. 5, November 1989)

(a) Prove that, for n =2 1,

Foor+ 2 BovioiFoy gy | ooe Fiyms o
o<11<...<7,,(sn
ln+lJ

l1<k<sn
n+1 k
= e 2Kk,
k=0 <27< + l)
where |x] is the greatest integer < x.

(b) Prove that, for n =2 3,

-1k o L F. 2k
0<Z:1<...<7:kgn( D5 E - i e Fip-i Fiy-2°2
l1<sks<sn
- _1yn+1
- Fn+3 + (-1 Fn-3

Solution by Y. H. Harris Kwong, SUNY College at Fredonia, Fredonia, NY

(a) Let S, denote the sum on the left of the given identity. Note that S, can
be rewritten as Z]:: 05n, k» where
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. ) F; F: ... F;
F1s vevs dxa1>0 “J17d2 Jk+1’
Jp+ s Jre1=n+1l

Sp,k =

which is precisely the coefficient of 2"+l din

<ZF$Y+1 hﬁi&:ﬁ“{

i=1
Therefore, S, is the coefficient of x"*! in

i__L>k+l___ﬁ__=J_< 1 _ 1
(1—90—902 1 -2¢-22 2/2\1 + (1 - Dz 1—(1—/§)x>

= —1—/_ ;i [(1+ V)" - (1 - V)"«

Hence, we conclude that n+1
IR ST N i b m Ly
Sn-zﬁj&( M ERNC RS (2% 1) 2

(b) Let T, denote the sum on the left of the given identity, then

n
1
T, = 2(_1)n+ kz:lTn’k,

where
Ty, x = 2 ) Fi (=2F;) «+« (=2F; )F;
n, K leJk+1> -1, ‘72,.‘., Je>0 J1 J2 Jx Jk+1°
gt +°jk+1=n"3

which is exactly the coefficient of x"~3 in

(Y () - G )

Hence, we have
© 1 © 2 -2 k-1
D R 2x3<— + ——————————> <—-————~——>
;g%( ) n x 1 -x - x2 ké;l I - ¢ - x2
22(l - x)? 2 - 3x 2 - x

(1 ~x -2 +x - x2) 1 - x - x2 1 +x - x2°

It is clear that

I 1 _l[a_B
1+ 2 - x2? (1 ¥ ax) (1l + Bx) o —- BLL + ox 1+ Bx}’

where ¢ = (1 4+ v¥5)/2 and 8 = (1 - V5)/2. Thus,

1 o (_l)n [an+1 — Brz+1]
- - (-1)'F, x",
1+ x - x2 ng() a - B Z "
which implies that
2 - 3x 2 -x <
1 X x2 B 1 +x x2 - ZO[(ZFVL+1 - 3F,) + (_1)n+1(2Fn+1 + Fn)]xn
- - - n=

Therefore, we conclude that for n > 0,

= (2F,41 + Fy) + (-D)"YL(2F, 1 = 3F,) = Fyez + (-1)"F1F, 5

Also solved by N. A. Volodin.
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Mix and Match

H-454 Proposed by Larry Taylor, Rego Park, NY
(Vol. 29, no. 2, May 1991)

Construct six distinct Fibonacci-Lucas identities such that

(a) Each identity consists of three terms;
(b) Each term is the product of two Fibonacci numbers;
(c) Each subscript is either a Fibonacci or a Lucas number.

Solutions by Stanley Rabinowitz, Westford, MA

Solution Set 1

Hére are six identities that meet the requested conditions, although they
are probably not what the proposer intended:

Fp,Fy + Fp Fp = Fp Fy
Fp, B+ Fp, By = Fp Fp
Fp Fp + Fp Fp = F Fy
By B, + Fp By = F F;
Fp Fp + F Fp = Fp Fp
Fp By + Fp B, = Fy Fy

Solution Set 2

If numerical identities are acceptable, then we have the following identi-
ties (found by computer search):

FoF3 + Fy Fg = FglFy
Follg + FsFyy = F3Fy3
FoFyg + FsFyy = FyF3
F3Fg + FyFg = Fpl'yy
F3Fy3 + Fglyg = Fslp)
FsFoy + FglF3y = Fi3F)9
FgFig + F11Fp) = F3Fp9
Fi3Fog + FrgF3, = Fsluy
where all the subscripts are distinct in each example.
Solution Set 3

The numerical identities in Solution Set 2 suggest the following identities
involving one parameter, %:

{FFM Fy.,, +Fs,, Fr,, =Fp F, , 1if i is not divisible by 3

o,

oew Frosy = Fe,, Fr,, * Fp Fp,.. if 3|z

We will prove these by proving the equivalent single condition:

F.
(1) FF‘L+‘+ FL‘I:+1 - (—-1) v FFi+2 FLi+2 = FFi FLi+3.
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To verify identity (1), we apply the known transformation
SEnE, = Lpyn = (-1)"Lp-n

to get: F L

- (-1 L[L@+2+Luq - (_1)1+2‘Lﬂ+2“h+2]

L; =
- LFi+Li+3 + (—1) i3 LFi'Lz’+3 = 0.

This identity can be shown to be true because, of the six terms, it can be
grouped into pairs of terms that cancel. Specifically,

L; 4
- (_l) o LFi+'+-L

T+ 1

1.+10+Li+1

(2) LEyytliny = DR+,

(3) (-1)fint LEy=Liey = (=D (-2 Lﬂ+2‘391
F; Ly

(4) (1) Lp, 41, = (L) Lp, .

Equation (2) follows from the identity

Fooy * Liyy = Fy + Liyss

which is straightforward to prove.
To prove equation (3), we use the fact that L_, = (—l)”Ln, so that

LFyy=Liny = Domiup+iiss

since a simple parity argument shows that F;,o, - L;;p 1is always even. Then we
note that F; + L;,» = L;,; (mod 2), which also follows from a simple parity
argument. Thus,

(-1 L1 = (=1)Fi tlis2
and we see that equation (3) is equivalent to
Fivw = Lipr = ~Fiup + Liso,s
which we again leave as a simple exercise for the reader.

For equation (4), we have similarly that F; = L;;3 (mod 2), and hence equa-
tion (4) is equivalent to the easily proven

F.

i+2 * Lyyo = -Fy + Liys,
where again we note that F; - L;43 is always even.

Finally, we note a second identity analogous to (1):
F; _
(5) Fy, - D Fp, Fr,y = Fr Fr,,,

whose proof is similar and is omitted.

Equations (1) and (5) appear to generate all the numerical examples I have
found. If we let 7 have the forms 3k - 1, 3k, and 3k + 1, we get the six iden-
tities:

+1 E2i+1

Fryes Fiw * Frgar Ly = TRy FLM+2
FF%+u FLu+1 = E%%+2 FL&+2 + Fry, FL&+3
Fryees Foyws ¥ Fryyy Frg,, = Fry Ek%+u
Fro Fryg + Fry, Fry, = Fry .y Fry.,
FngH Frger = Fryn FF3k+2 + Fpy, FF3k+3
Fryws FLy,, + Fry Fryes = Frg,, Fry.,

which are probably the ones the proposer had in mind.

Also solved by P. Bruckman and the proposer.
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Squared Magic

Proposed by T. V. Padma Kumar,

(Vol. 29, no. 3, August 1991)

Trivandrum, South India

Characterize, as completely as possible, all "Magic Squares" of the form

al a2 aa a,+
by | b, | by | b,
Cl 6’2 C"3 C’H
d, | d, | d5 | 4y
subject to the following constraints:
1. Rows, columns, and diagonals have the same sum
2. ay+a,+dy+d,=b,+by+te,+eyg=a, +b;+a, +b, =K
3. cl+d1+c,_)+d“=a2+a3+b2+b3=02+c3+d2+d3=}(
4o ayt+tay;+b +b,=c)+c,+d +d,=az+ta,+by+thb, =K
5. 03+cq+d3+d“=cl+d2+a3+b“=al+a2+dl+d2=K
6. azyta,+dyg+d,=b+b,+e;te,=bz+b,+ecyte, =K
7. ay+tayt+td,+dy=Dby+ey+b,+e, =K
8. ay+b +te ta,+b,+ay;=Dhb,+eyt+te, +d,+d;+d,=3K/2
9. by +e;+dy+e,+dy+dy=a,+tazgta,+Dby+ b +e, = 3K2
2 2 2 2 - 12 2 2 2
10. a3 +a§+d5 +d§=Dbf+ecf+Dbf+ecg
2 2 2 2 o 42 2 2 2
11. ef+ec5 +df +ds =af+ by +af +Dbf
2 2 2 2 o 42 2 2 2
12. e§j+el +d§+df =af +Dbf+aj+D5
2 2 2 2 2 2 2 2 -
13. al+a2+a3+al‘+bl+b2+b3+bq M
2 2 2 2 2 2 2 2 -
14. cl+cz+ca+cq+dl+d2+d3+dh M
2 2 2 2 2 2 2 2 -
15. a1+b1+cl+d1+a2+b2+cz+d2 M
2 2 2 2 2 2 2 2 -
16. af + b5 +ec§+dg+ai+Dbi+ei+ dg = M
17. a; +b,+ey+d, +dy +te, +byta, = by+e +ta, +d, +ag+dy+b, +e,
18. aja, + aza, + byb, + byb, = cje, + egey + d\d, + dyd,
19. ayb; + eyd) + ayb, + cyd, = azby + eydy + a,b, + e,d,

Solution by Paul S. Bruckman, Edmonds, WA

We first apply constraints 1-9 and 17, which are linear in nature. We find
that these constraints are satisfied with 4 degrees of freedom, that is, with 4
of the 16 unknown quantities still undetermined. We may choose any 4 of the 16
quantities as arbitrary and determine the other 12 from these, so as to satisfy
For example, if we leave a;, @, dgs and bl as arbitrary, our magic
square will look as follows:

1-9 and 17.

1992]
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k—al
a) az as
~az-as
k-a; ay+b; az+ag
by
-a; - by -as -by
al+a2
S-as S-a 5= a
2 k 27 %1 2
+ - —
ag 2
E—al 27 a2 k aytas
770 k
—b1+a3 —a3+b1 +b1—§

It is a tedious but trivial exercise to verify that the quantities shown above
satisfy constraints 1-9 and 17, and also constraints 10-12, 18, and 19. As for
constraints 13-16, we may also verify that these are satisfied by the above
quantities, provided the following single condition holds:

(%) M = 2k? - 2k(2a, + 2a, + ag + b)) + 4b% + 4b (a; - aj)
+ 4a,(a; + ag) + 4(a? + ad +ad).

The condition in (%) removes one additional degree of freedom, thereby leaving

only 3 undetermined quantities, say ays Ay and as- If we require that the
magic square's entries be integers, this imposes additional constraints on the
entries, subject to the Diophantine solutions of (*). If, in addition, we

require that the entries be distinct, further restrictions apply.

As may be shown, the corner entries of any 3 X3 square contained within the
large square must add up to k, as well as the corner entries of the large
square itself. Moreover, the entries of any 2 X 2 square contained within the
large square must total K.

An example which satisfies all 19 conditions (though not the condition that
the entries be .distinct) is the following, taking k = 18, ¥ = 208, a; =4, a, =
3, and ag = 5:

4 3 5 6

8 3 7 0

If we take k = 34, M = 748, a; =5, a, = 11, a; = 8, we obtain a "conventional"
magic square (where all entries are integers; in fact, the integers from 1-16).
There are many such magic squares possible; this is only one such:

5 | 11 8 | 10
16 2 ] 13 3
9 7 | 12 6
4 | 14 1| 15
Also solved by the proposer.
sk kkk
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