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1. Introduction

Buler's ¢-function ¢(m) for m a natural number is defined to be the number
of natural numbers not exceeding m which are relatively prime to m. Euler's
Theorem states: If m is a natural number and a is an integer such that (a, m) =
1, then at = 1 (mod m). It is well known that if m > 1 and

= p1'py? .. P

is m's unique representation as a product of pairwise distinct prime numbers,

then
1 1 1
=m1 - =){1 - =) ... -1
$Gm) m( p1>< p2> (1 pt>

For a discussion of Euler's ¢-function, see [19], pages 180-83 and 185-90. For
clarity of notation,

GCD(a, b) = (a, b)
occasionally will be used for the greatest common divisor of g and b. Also,
LCM[a;s a,s «ves gl

will be used for the least common multiple of aj, as, ..., ay. As will be seen,
the ¢-function is useful for generating sequences of rational numbers which are
used to construct generalized Kummer congruences.

This paper is concerned with sequences {MJ} -0 of rational numbers. It
will be supposed that each such rational number is written as a quotient of
relatively prime dintegers. A rational number so written is said to be in

standard form. It is immaterial for this discussion whether the denominator be
positive or negative.

The purpose of this paper is to develop a method which will generate
sequences of rational numbers (e,-sequences) which satisfy Kummer's congruence
(see line 9 in Definition 3) and especially Theorem 7. The sequences are
manifold: they include Bernoulli, FEuler, and Tangent numbers as well as
Bernoulli and Euler polynomials. Some additional applications will also be
given. For example, Kummer's congruences involving reciprocals of Bernmoulli
(Theorem 9) and Fuler numbers (Theorem 8) will be given. A ring structure for
some of these sequences will be observed (section 7), and finally some
additional examples will be given (section 8).

The Bernoulli polynomials {Bj(x)l;=o are defined by

xt
1) Lo Z B; <x>

et -1 4

and the Bernoulli numbers {BJ{?=0 are defined by the generating function

z ©
@ =t
L | j=OJ

e

See [21], pages 167 and 35.
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A GENERALIZATION OF KUMMER'S CONGRUENCES AND RELATED RESULTS

A rational number a in standard form is a p-integer for the prime number p
provided the denominator of a is relatively prime to p. See [l], pages 22 and
385. Kummer's congruence says: If p is a prime number and kX £ 0 (mod p - 1)
where k is an even natural number, then B;/k is a p-integer and

By+p-1  _ By
(3) Krp-1- % (mod p).

In the paper [11] Fermat's Little Theorem was generalized to sequences
{uj};=0 of rational numbers which include sequences of the form {aJ};=O where a
is a rational. Basically, [11] investigated sequences {uj};=0 having the prop-
erty up = u; (mod p) for p a prime number. It is to be observed that up = u;
(mod p) can be formed umbrally from aP = a (mod p) by didentifying superscripts
with subscripts and changing a to u. Here congruences (mod m") are investigated
with m > 1 a natural number.

Definition 1: Let m > 1 be a natural number and let a be a rational number in
standard form. The rational number a 1is said to be an m-integer or to be m-
integral provided the denominator of a is relatively prime to m. If m is a
prime number, then of course a is simply a p-integer.

The main results of this paper follow Theorem 1. However, Theorem 1 is
important for Definition 3. See the remarks immediately following Definition
3.

Definition 2: Let m > 1 be a natural number and suppose m = p?lpzz . p?‘ is its
unique representation as a produce of pairwise distinct prime numbers. The
height h(m) of m is defined to be

(4) h(m) =  Bax (aj).
If m = 1, then h(m) is defined to be O.

Theorem 1 follows from results in [9] or can be easily proved directly.
Theorem 1: Let m > 1 be a natural number and suppose a is an m—-integer. Then
(5) g®M*RM _ ghtm = 0 (mod m).

If m = p a prime number, then

h(m) = h(p) =1 and ¢(m) = ¢(p) =p -1

so that Theorem 1l says a? - a = 0 (mod p), which is Fermat's Theorem. If (a, m)
= 1, then Theorem 1 is Euler's Theorem.

Using Euler's Theorem, if @ is an m-integer, r an integer, g a natural num-
ber, and if r is negative 1/a is also an m-integer, Theorem 1 and induction
give

(6) aP[MM)+h(mHg rlh(m19 0

-a (mod m) .

To see this, note that a” is an m-integer whether » is positive or negative.
From (6) for »n a natural number with » and k integers,

N ak(ar[¢(m)+h(m)]g _ ar[h(m)]g)” =0 (mod m™.
(See the second paragraph after Definition 4.)

Here, a and 1l/a are both m-integers if either kX or r is negative. This says
that

n i X .
(8) E(_l)a (;)a(n—J)r[MmHh(m)]g+r[h(m)]9J+k =0 (mod m").
j=0

Viewing (8) umbrally gives the inspiration for the following Definition.
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Definition 3: Let m = LCM[my, my, ..., my] > 1 where my, my, ..., my are natural
numbers. The sequence {uj{j=o of rational numbers written in standard form
such that each element of

n
{”(n- Falm) +8(m) g+ y(m)}j= 0
is an m-integer where a(m), B(m), and y(m) are integers such that

fn, §) = (m = Halm) + Bm)J + y(m) =2 0

is an ey,-sequence with shift (a(m), B(m), y(m)) with respect to m provided

n
i(n
-1)J = g n
© jgo( b <j>“f(n,j) =0 (mod myimy2 w.. mge),
where 7y, 73, ..., 7 are whole numbers such that n; + ny + ... + n, = n. This
is, of course, equivalent to

1
—_— ~
jg%f-l)J(j>ufm’n_j) =0 (mod m'mjz ... mf).
In other words, 7y, Yo, ..., Ny forms a whole number partition of the natural
number 7. (See the comments immediately following Theorem 8 and Definition 4.)
It is easy to see that (9) can be replaced with the modulus

{LCM[ml, Moy ooes mt]}n.
(See the third paragraph below.) It is this form of (9) that will be used.

To say, for two rational numbers a and b, that a = b (mod m) for m > 1 a
natural number simply means (a - b)/m is an m—integer.

Theorem 1 does, as seen above, generalize Euler's Theorem. However, Theo-
rem 1 is not the main generalization with which this paper is concerned. A
sequence that is an e,-sequence with shift (a(m), B(m), y(m)) could be called a
generalized Euler sequence. Thus, this paper is not so much concerned with
congruences of the form a’*® = g” (mod m) (see [5], [7], [9], [15]) as it is
with sequences that satisfy (9). Kummer's congruences are related to congru-
ences of the type (9) with the modulus

{LeM[my, mp, «o., my 13" = m™.

Because of the special role that Euler's ¢-function plays in finding many such
congruences, it seems appropriate to refer to sequences named by Definition 3
as generalized Euler sequences.

In light of (8), one possible choice for a(m) and B(m) is

a(m) = ray(m) and B(m) = rBi(m)

where r is an integer and a;(m) and B;(m) are such that, for some integers rj,
Tos eees Pp3 815 825 +..5 S8p and some natural numbers gj, gos --+5 Gy

riloGm) + )1 + 8y = Py[9(my) + R(mp) 17
= vee =1 [00m) + h(m) 1% + sy = ay(m)

+82

and
ry[h(my) 192 + s,

= oo = r [W(m) ]9 + 5, = B1(m).

r[h(m) 190 + 5,

To keep this shift from being trivial, a;(m), By (m), r # 0, and aj(m) # By(m).
This shift (oa(m), B(m), y(m)) is a natural shift. It is clear that for a nat-
ural shift

n . .
17 (Ma™ D = 0 (mod mMml? ... mPt) for an m-integer.
=0 J 1 72 t
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The reason for this is

(@™ — gBM)™ = 0 (mod m[")

so that .

Il (@M — gBmy™i - (galm _ as(mh"1+”2+"'+"t

i=1

E: (- 1)3( ) af™ 9 =0 (mod mflmgz .. m:t),
where 7y, %y, ..., Ny are whole numbers such that n; + n, + ... +#n, = n. Note
that a(m) and B(m) depend upon my, Mo, «ees Mp3 Pls P2y eues Py 31, 895 eeas
8¢5 and gy, gps .-+»> Jp. Special care is needed when any of the r's or s's are
negative. Note also, since the expression is divisible by m?lm2 ... mt for
any whole number partition of n =n; +ny, + ... + ny, it will be divisible by
[LCM[my, My, ...s mp)]" so that {u;}’_, being an e,-sequence with respect to
1 2 t Jg 0 n
= LCM[my, mp, ..., my] implies that
= n
J):O( DI Vetpin, ;) 20 (mod{LCMImy, 1z, ovs 1,137

and conversely. Thus, for each way of writing m as LCM[my, my, ..., m;] there
is the possibility of a separate congruence (mod m"). The simplest way of sat-
isfying this is, of course, m = LCM[m]. From now on, m will denote LCM[my, my,

.» m¢] for some natural numbers my, my, ..., My;. As will be seen, other ways
of writing m besides m = LCM[m] do indeed lead to different expressions = 0
(mod m"). See section 8 for some examples. ([my, mp, ..., my] is called an LCM-
partition of m when m = LCM[my, my, ..., m,] and my, my, ..., my are all natural
numbers > 1.

Definition 4: Let {uJ} -o be a sequence of rational numbers written in standard

form such that each element of {u- Jﬁﬂm)+swwg+v(m)} is an m-integer where
a(m), B(m), and y(m) are integers such that

fn, §) = (n = g)a(m) + B(m)g + v(m)
If

2: (- 1)J( >“f0zg) = 0 (mod m"), where m = LCM[my, mo, ..., my] > 1

for some natural numbers my, my, ..., My, then this congruence is a generalized
Kummer congruence.

From the above, if LMJ} -o is an e,-sequence with shift (a(m), B8(m), y(m))
with respect to m, then it satlsfles a generalized Kummer congruence.

A remark on ¢(m) and h(m) is needed: these functions are convenient to use;
however, if for some natural number m > 1 there exist A(m) and B(m) such that
for every m-integer a, a#(m - aBm = 0 (mod m), then A(m) could be used in
place of ¢(m) + h(m), and B(m) in place of h(m). Consequently, many of the
results in this paper can be generalized somewhat by just such a consideration.
However, because of the convenience of finding and working with ¢(m) and A(m),
the results are stated in terms of these two functions. Furthermore, some of
the parity properties of ¢(m) are used in the proof of Theorem 2, so it was
felt that it was better to state the results in terms of natural shifts.

There exist sequences {uj} ., with shifts other than the natural shift

(rlo(m) + h(m) 19, »[h(m) 19, y(m)).

For example, using Theorem 5, if p is an odd prime and a¢ is a p-integer such

that .

1
(a, p) =1 and - - - for 1 <7 <n
(i - HHaP + aj

Ji=0
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are all p-integers, then the sequence {1/jl;=l is an e,-sequence with shift
(aP, a, 0) with respect to p. The condition

1
(Z - J)a? + aJ

is a p-integer for 1 < 7 < n

is equivalent to p > n. Thus {l/j};=1 is an e,-sequence with shift (a?f, a, 0)
when p > n. Here m = LCM[p].

From the above definitiom, it is clear that linear combinations of g,-
sequences with common shift (a(m), B(m), y(m)) with respect to the same natural
number m > 1 are also ¢;-sequences with shift (oa(m), B8(m), v(m)) when the
coefficients defining the Jlinear combinations are all m-integers. In parti-
cular, multiplying each term of an e,~-sequence by an m—-integer gives an eg,-
sequence.,

It is possible to couch condition (9) in terms of the difference operator
A, hére defined by Au, = upyp = Up. If

x =ng(m + y(m) and £ =a(m - B(m,

then it turns out that
n L (N
A Mx Z (—1)'7( )uf(n,j).

#=0 J

[

Note that if

a(m) d(m)y + h{m) and B(m) = him),

then the increment ¢ is just ¢{(m). This will be returned to later in connec-
tion with the Factor and Product Theorems.
Let {ijﬁ=0 be the sequence of Lucas numbers. It is well known that
1+/§>J'+(1~/§)=7'
3

(10) Lj = ( 5 5 J =2 0. (See [13], page 26.)

Although (10) represents L; in the form ad + 87, neither o nor B is rational.
By the main theorem of [11], {Lj};=0 is an e¢;-sequence for any prime number p
with shift (p, 1, 0); i.e., for p a prime number, Lp = L; (mod p). However,
simply because L; is the sum of powers of (1 + /g)/2 and (1 - /§)/2, this is
not sufficient for {L;j};., to be an e,-sequence with arbitrary shift. Indeed,
{Lj}?=o is not even an e, -sequence with shift (p, 1, 0) for the prime number
p = 3 gince Lg = 20y + Ly # 0 (mod 32), Hence, it does not follow that if each
term of the sequence {u }7_, of rationals is of the form
u; = xf +xd + o0+ xf
then the sequence is an e, -sequence with even reasonable shifts.

2. Euler Polynomials and Numbers

The Euler polynomials F#,(x) of degree »n and argument x are given by the
generating function
2et = Ei(x)t?

(11) m =j§0 "“7!“-—”"'. (SEE [Zl]y page 175.)

A well-known formula involving the Euler polynomials is
N
a2 3
i=1
where 7 1, 2, 3, oo and N =1, 2, 3, ... . (See [16], page 30.)
Using the notation introduced in Definition 3, replace n by f; = f(n, J) in

(12) so that

DV R = HE 1)+ (DYE,(0)),

[
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A GENERALIZATION OF KUMMER'S CONGRUENCES AND RELATED RESULTS

N
(13 YV S lme @+ D+ (DY (03,

=1

To (13), apply the operator
> (-1)7 (% )a%s
§=0 J

so that

n X N .
SR WD (1)~ igli $ 1
=0 J

i=1

= LS yd (M Ly S opyd (Mg
-7 2 D7 (5)at By (4 1)+ -1 260 (5)ams, (0.

Expanding the left side of (14) gives

as) ¥ COAT) DY - el ot - s D )
ji=o

= CDPTHET P - aBMTT - (2a) P [(22)2 - (2a)30 )"

+ o= e + (DL W)™ ] (Wa) 2™~ ()BT
Now if a(m) and B(m) are such that
[(La)*™™ — (£a)BM 1" = 0 (mod m™) for 2 = 1, 2, vuus N

where m = LCM[my, my, ..., m;], which they will be for the natural shift (a(m),
B(m), y(m)), then by (7) for a¥™, (La)*™, (ia)B(™ all m-integral for < = 1, 2,
3, «ovs Ny (15) will be = 0 (mod m"™). Because of the conditions needed for all
these numbers to be m-integers, it is supposed that r» =2 0 and y(m) = 0.

Suppose that a(m) = raj(m) and B(m) = rB;(m). For m; = 2 where 7 =1, 2,
..., t, the parity of f(n, J) is the parity of rr|j + y + nrs;, which will be
even if » and y(m) are both even. On the other hand, if m; > 2 for some 7 =1,
2, «.., t, all of the numbers f(n, j), 0 < J < n, have the same parity. To see
this, use the fact that ¢(m;) is even when m; > 2. From (15) and (14),

1< i (MDD 1 < (" O D
A6) 5 2 D (5)a" Php, W+ D)+ DY B 1 (5 D, (0)

J
=0 (mod m").

It is well known that, for f(n, J) even, Efm,55(0) = 0. (See [21], page 179.)
Now f(n, ) is even when B;(m) is odd and nr + y(m) is even when 8;(m) is even
and y(m) is even.

Next, suppose that m is odd so that 1/2 is m-integral. In this case, for
-(1/2) (mod m™) and f(u, j) odd, then

Ef(mj)(%) =0,

whereas, if f(n, j) is even

N

i

"

Efm,j)(l) = 0 [letting ¥ = 0 (mod m™]. (See [21], page 179.)
Hence, in (14),
7
(N
~1)¢ .
J.;)( D (j)Ef(n,J)(O)

when f(n, J) is even or when m is odd. Since # is a natural number in (12) and
f(n, §) replaces n, it follows that f(n, j) = 1. This establishes the following
theorem.

0 (mod m™

i
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Theorem 2: Let m = LCM[my, mp, ..., my] > 1 with my, my, ..., m; all natural
numbers and a, Y(m), and x all m-integers. Suppose

fn, §) = (n = Jra;(m) + rB1(m)g + y(m) 21 for 0 < j < #n,
where r» 2 0 and y(m) 2 0. Assume one of the following statements holds:

(1) m; =2 for 2 =1, 2, ..., t, and » and y(m) are both even;

(2) m is even and m; > 2 for some ¢ =1, 2, ..., t, B1(m) and y(m) are both
even;

(3) m is even and m; > 2 for some 7 = 1, 2, ..., t, and nr + y(m) is even
but By(m) is odd;

(4) m is odd.

Then {afOZJ)EfolJ)(x)} - are all m-integers and {aJE (x)} is an e,-sequence
with the natural Shlft (a(m), B(m), y(m)).

The hypothesis of Theorem 2 cannot be weakened to simply: m > 1 is a natu-
ral number. To see this, let m = 4 = LCM[4], n =1, g =r = y(m) = 1. None of
the four hypotheses is satisfied if r; = 1 and s; = 0. If the weakened hypoth-
esis is valid, then

(17) ZO( 1)7 ( VB p (@) = Eg(@) - Ey(a)
P
s5c% | 5x2 1 322
(€5 -2+ 25 - 3) - (=° - 5+

) = 0 (mod 4)

=

which is false.
For m > 2 and m odd, the coefficients of the Euler polynomials are all m-
integers. To see this, use

= o-n N (n _ n-gm.
(18) E,(x) = 2 j;o(j>(2x 1)"~JE;,

where {E}};=0 is the sequence of Euler numbers. The Euler numbers are all
integers and, furthermore, E; = ZtEt(l/Z). (See [21], pages 177, 39, and 42.)
The above observations along with Theorem 2 establish Theorem 3.

Theorem 3: Let m = LCM[my, my, ..., m¢] > 1 with my, mp, ..., my; all natural
numbers and a an m-integer. Suppose

fn, gy = (n - Hra;(m) + rgy(m) j+y(@m 21 for 0 < 4 < mn,

where » 2 0 and y(m) =2 0. Then {aJEb}J_ is an e,-sequence with the natural
shift (a(m), B(m), y(m)).
The Euler numbers form secant coefficients since
x2d

= 1 B2
sec & 2%)( ) (2 Y

which is convergent for |x| < m/2. The number Ey,4; = 0 for n > 0. (See [18],
pages 202 and 203.)

3

3. Bernoulli Numbers and Polynomials

The above results open the way to exploration of Bernoulli polynomials and
Bernoulli numbers with respect to forming e¢,-sequences. A useful relationship
is

on+tl x+ 1 x
19 B@ = 2B (552) - Ba(§)] forn-o0, 1, 2,

(See [21], page 177.) Using this and the hypothesis of Theorem 2, we have

(20) {%[Bwlez—l) - Bj“(%ﬂ};:o
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is an e,-sequence with natural shift (a(m), 8(m), y(m)) for the natural number

m = LCM[m;, mp, ..., my] > 1. Here, both g and x are m-integers.
In (20) let x = 0 so that
Bi1(3) =< zZ__ 1>B-+1 and Biy1(0) = Bj,q, for 4 =1, 3, 5,
2 27 +1 J J J
(See [21], page 171.)
After simplification and using Bp;,; = 0 for j =1, 2, 3, ..., (20) gives
Theorem 4: Let m = LCM[my, mp, ..., mg]l > 1 with my, my, ..., my all natural

numbers and let a be an m-integer. Suppose
fn, §) = (n = glam + B(m)g + y(m) 21 for 0 <j <,
where » 2 0 and y(m) 2 0. 1If m is odd, then

. . B n
f, gy+1 foL gy +1 fn, ) +1 }
2 - 1)a —_—

{( ) Fns g) + 1§

are all m-integers and

BA ©
i+l _ J+1 _iil_}
(21) {(2 1)a gt U

is an e, -sequence with the natural shift (a(m), B(m), y(m)).

It is important in working with these e¢,-sequences to first put the terms
in standard form and then reduce the expression (mod m™).

Theorem 4 generalizes some well-known results. With the hypotheses of
Theorem 4, (21) says
(2r[¢(m)+h(m)]9—r[71(m)]9]J+kl)
(22) ( 1)J( ) Blrlo(m) + h(m 19 - »[h(m) 1914 + k
= [r[¢(m) + R(m1¥ - r[R(M)]17]] + &k

e =

0 (mod m™),

where k = r[¢(m)]19n + y(m) + 1. Here m = LCM[m]. This last condition is equi-
valent to saying k > »[¢(m)]19n. If m = p (a prime number), » = g = 1, then (22)
gives ((p—l)J+1>

n ; Bip- 1)
23 0" P-DI*k = 0 (mod p™), k > (p - L)n.
23 fg%( ) <J) (p - DJ +k (mod p™) (p n

The Bernoulli, Genocchi, Lucas, and Euler numbers are closely related (see
[14]). 1In particular,

(24) G, = 2(1 - 2™MB, and R, = (1 - zn-—l)Bn’

where G, and R, are the Genocchi and Lucas numbers, respectively. With the
same hypothesis as Theorem 4, m = p = LCM[p] and r» = g = 1 gives as examples

(25) Z( 1)=7( )——(2;9'7;"— = 0 (mod p"), and

(p - DJ +k
n (2P DItk _ DBey- 1),
J p-1)j+k -
; -1 ( )(]_ - Z(P‘I)J+k 1)((p - 1)J + k) 0 (mod p*).

For a further discussion of these numbers, see [6] and [25].

4. The Factor and Product Theorems

In (21) it is clear that {29+l - l} - 1s an e,-sequence with natural shift
(a(m), B(m), y(m)) for the natural number m = LCM[my, mp, ..., ms}. This sug-
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gests the possibility of "factoring" a sequence of the form {u;v;}7
end, consider

i=0° To that

(26) N'ugv, = ‘Zj (’?)(M-iu ) (A% e)
xYx ~ 7 x c+(n-2)t/) »
i=
where
27) An“ 2: (-1)7 ( ) x+(n-g)t*
Jj=0

Here, the difference operator is defined by Au; = Uzt — Uy (See [10], pages
6 and 1, respectively.) Rewriting (26) using (27) gives

(28) Z (- 1)J< >7/ix+(n NtPx+(n-9t
Jj=0

=1§O<Z>< Z( l)J( P >7’Lx+(n i- J)t>< Z (-1)° ( )“H(” ﬂt)

To express this in a form needed for e;-sequences, let
(29) x+ (n-g)t = m-g)oa(m + B(m)g + y(m), so that
x = nB(m) + y(m) and t = a(m) - B(m).

Substituting these in (28) yields

J
(30) Z (-1) < )”(ﬂ Ha(m) +8m)g+ymP(n - F)alm + B(mg+y(m
AN O im o= 1
= 2 [(J 2. (—1)‘j( - Viknm s - pam + Bom+ Bm+ 1om
i=0 0 Jo

(Z ( ]-)J< >U(n J)a(m)+8(m)g+‘{(m)>:l

Using this, the Factor Theorem is obtained.

Theorem 5 (Factor Theorem): Let m = LCM[my, mp, ..., my] with my, mp, ...y my
natural numbers. If

(a) {ujvj}f , 1s an e,-sequence with shift (a(m), 8(m), y(m)); and

(b) {UJ} - is an ¢;-sequence with shift (a(m), B(m), (n - 2)a(m) + yY(m)), for
1 = l, 25 cees n - 1; and

(c) {uj};=0 is an e,_;-sequence with shift (oa(m), B(m), B(m)Z + y(m)) for 1 =
1, 2, ..., m = 1, then
1) If (my, Vpa@my+yom) = 1 and {Ule-O is an e,-sequence with shift (a(m),
B(m), y(m)), then {uJ} -o 1s an e,-sequence with shift (a(m), B(m), Y(m));

2) If (my Upgmy+y(my = 1 and {”le—o is an e,-sequence with shift (a(m),
B(m), y(m)), then {vJ} -ols an ¢,-sequence with shift (a(m), B(m), y(m)).

An examination of identity (30) also leads to the Product Theorem.

Theorem 6 (Product Theorem): Let m = LCM[my, my, ..., mg] >1 with my, my,
.» my natural numbers. If

(a) {uj};=0 is an e,_;-sequence with shift (a(m), B(m), B(m)Z + y(m)) for 7 =
0, 1, 2, ..., m - 1; and

(b) {UJ}J o 1s an e;-sequence with shift (oa(m), B(m), (n - 2)a(m) + y(m)) for
=1, 2, «.., ny thus, {u; UJ%7 o 1s an e,-sequence with shift (a(m),
B(m), y(m)).
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Using m > 1 being odd and y(m) 2 0 arbitrary, Theorem &4 together with the
Factor Theorem and Theorem 1 yields

Theorem 7: Let m = LCM[my, my, ..., my] > 1 with my, mp, ..., m,; all natural
numbers. If

(a) fn, §) = (n - Jlray(m) + rB;(m) + y(m) is an odd natural number for 0 <
J < n; and

(b) » 20, y(m) 20, g is a natural number; and
ira) (m) +y(m) + 11

(c) GCD(m, 2 = 1 or, equivalently

; + Y+ 1 .
cen(m, 27T g for = 1, 2, Lal,
B . n B ®
then {}7£¥2§?;iLI}f=o are all m—-integers and.{jjill}j= is an ¢,-sequence with

the natural shift (a(m), B(m), y(m)).

In Theorem 7 let m = p = LCM[p] be an odd prime number and suppose r= g =1
and k = n + y + 1. Then (c) becomes

(p, 28" 1)y =1, i=1, 2, ..., n.

If (p, 2k = 1) =1, then k # 0 (mod p - 1) since p|(2P"1~ 1) by Fermat's Little
Theorem. Theorem 7 gives

L (M Pe-bivr "
GO LV (GG E 20 med P
This congruence is well known (see [3], [4], [18], [22], [23], [24], [26]).
The paper [22] has many references to these and related congruences. It 1is
clear that Theorem 7 with m = p = LCM[p] does not remove the restriction X Z 0
(mod p - 1).

In Theorem 7 let m = pt, where p is an odd prime number and ¢ is a natural
number. Then

o(m) = ¢(pt) = pt~l(p - 1) and h(m) = h(p?t) = t.
Further, suppose that y(m) = y(p?*) 2 0, » 2 0, g is a natural number and n = 1.

Then Theorem 7 gives

B t=-1 -1 tg 1 B g 1
(32) rlp* " (p- D+t +y+ - rt9+ v+ (mod pt),
rlpt-Yp -1 +¢t]9 +y+1 »t9 +y+1

when (p, 2°*Y*1 - 1) = 1. 1In (32) let t =1 and y = 2k - 2. This then is Kum-
mer's congruence with the hypothesis (p, 22k~ 1) = 1. Similar congruences
immediately follow from Theorem 7 for m = p?* and n an arbitrary natural number.

Repeated use of the Product Theorem allows for variations of the previous

results. Thus, for m > 1 an odd natural number {aJE?ib E;ibz oo E;ibQ§=O is
an e,—-sequence with shift (r[¢(m) + h(m))9, »[h(m) ]9, th)) where » = 0, y(m) =
0, ai, ass «ves ag3 by, bys «.., by are whole numbers and a is an m-integer.

One application of this is to let
ay =ap =+ =a, =1 and by =by=-e0 =h, =0

so that {E§};=0 is an e¢,-sequence. For example, let m = p = LCM[p] be an odd
prime number and let m = 2. Then, for ¢ any natural number,

t t -
Bipey = 2BSsys1+ Bysp = 0 (mod p?).

Here, vy = y(p) 2 1 and » = 1. For example, letting p = 7 and y = 2, this says,
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after reduction, for every m a whole number
40" = 247" + 5" = 0 (mod 49).

It is possible to combine both the Factor Theorem and the Product Theorem.
Since {1}_, is an e,-sequence with respect to the odd natural number m > 1 and
for j even, E}(l/Ej) = 1, it follows that for the natural shift with » = 0,
y(m) = 0, and f(n, j) even, for 0 < jJ < n and { 1/Ef@hj)};=0 consisting of m-
integers, then {1/Ej}jevm1’ is an e, -sequence. From Theorem 3 it follows that

Ef0uj+-n z Ern, §) (mod m) for 0 < Jg +1 < mn,

so that if (m, thuj)) =1 for any g = 0, 1, 2, ..., %, then.{l/Eﬂn’jﬂ;=0 con-—
sists of m-integers. This establishes

Theorem 8: Let m = LCM[my, mp, ..., m¢] > 1 with my, my, ..., my; natural num—
bers .be an odd natural number. Suppose
fn, §) = (n = JHray(m) + re1(m + y(m)

is an even natural number where » =2 0 and y(m) = 0. If (m, EfOuj)) = 1 for at
least one j = 0, 1, 2, ..., n, then the sequence {1/E;} is an e,-sequence

J even
for the natural shift (a(m), B(m), y(m)).

In Theorem 8, what is meant by saying {1/E;};cyen is an e,-sequence? For
that matter, what is meant by saying {uj}joftheformp is an e,-sequence? This
simply means:

(a) f(n, j) is of the form 7 for 0 < j < n,
(b) {“fKn,jﬂ;;o are all m-integers, and
n :
(c) E: (—1)J(§)uf0hj) = 0 (mod m") where m = LCM[my, mp, ..., mgl > 1 with my,
j=0
Mys «..5 My natural numbers.

Since

{Bj+1 L Jt 1}
J+ 1 Bisy1J; odd

is an e,-sequence with shift (roa;(m), rB81(m), y(m)), » = 0 and y(m) = O for the
odd natural number m = LCM[my, my, ..., my] > 1, Theorem 7 gives conditions for
{Bj,1/(J + 1)}; qq to be an e,-sequence, and [f(n,J) + 11/ Bf(n, jy+ 1 will be an
m-integer when

B, ) +1 ) -

o 3G, BT

This implies

Theorem 9: Let m = LCM[my, mp, ..., mg] > 1 with my, my, ..., my all natural
numbers and m odd. If

(a) f(n, §) = (n = Jdray(m) + rBy(m) + y(m) is an odd natural number for 0 <
J < ny and
(b) » 2 0 and y(m) = 0; and

3 + +1
(c) GCD(m,leﬁ(m) Yom 1)= 1 or, equivalently,

Gep (m, 271 M F T T

By, ) +1
(d) (m fn, §) +1

1)=1 for 2 =1, 2, ..., n; and

> = 1 for at least one J = 0, 1, 2, ..., %,
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cren {10 D) 1
Bfn, ) +1
natural shift (a(m), B(m), y(m)).

n '+ loo
} are all m-integers and {i} } is an ¢, -sequence with
=0 J+1lJ)j=0

5. The Tangent Numbers

The tangent numbers {Tg{;zo are defined by the generating function

o jyxj
(33) tan x =

; J!
Jg=0
It is well known that To; = 0, J = 0, and

B
(34) Top-1 = (=1)""Lgn(4n - 1)755- is a positive integer.
For a discussion of these numbers, see [12], page 273. Theorem 4 together with

these observations gives

Theorem 10: Let m = LCM[my, my, ..., my] > 1 with my, my, ..., my; natural num-—
bers be an odd number and suppose

fn, §) = (n - Jray(m) + ry(m)g + y(m) =1

for 0 £ j <n, » 20, and y(m) = 0. Then {(—l)(‘j_]')/2 jb}jodd is an e, -sequence
with the natural shift (ra;(m), rB;(m), y(m)).

6. Miscellaneous Results

A formula analogous to (12) for Bernoulli polynomials is
v
R 1
(35) Z "= m(3n+l(]v + 1) - Bn+l)’
=1
where both #n and N are natural numbers (see [16], page 26). Let
Fns §) = f; = (n = Jray(m) + r8y(m) + y(m),

where m = LCM[m;, myp, ..., my] > 1 and my, my, ..., my are natural numbers. In
(35), replace n by j} (so that f} > 0) and to this apply the operator

jg%(_l)j<§>
so that

Jj=0

1 70 J fiv1

Using Theorem 1, this implies

Theorem 11: Let m = LCM[my, mp, ..., my] > 1 with my, my, ..., m, natural num-
bers, and let

fi =fn, §) = (n = Hroay(m) + rBy(m) + y(m) = 1

for 0 < j <n, » 20, and y(m) 2 0. If x is an m-integer, then

{ij+1(x) - ij+1}°°
fi+1
are all m-integers and

{Bj+1(90) - Bj+1}‘”
Jg+1

Jj=0

j=0
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is an e¢,-sequence with the natural shift (a(m), B(m), y(m)). Here, m is a nat-
ural number.

Now Bory1 = 0 for kX = 1, 2, 3, ..., so that, if f(n, F) + 1 = 3 is an odd
number, then

{ Prtn )+ 1 }VL are all m-int d {—BjJrl(x) § i
ar . e~ . T -1 . -
o, 7) F 1 =0 integers an JHT fizo is an g, -sequence.

With these observations, Theorems 11 and 7 yield

Theorem 12: Let m = LCM[my, mps ..., my] > 1 with my, mp, ..., m; natural num-
bers, and suppose

fm, 3) = (n = Pray(m) + rBy(m + y(m) =1

for 0 < j <mn, r 20, and y(m) 2 0. Suppose also that x is an m-integer. If
fn,.j) +1 23 and f(n, J) is even for 0 < § < n, or if
iray (m) +y(m) + 1 LBy (m) + y(m) +1
GCD(m, Zumlm v 1>= 1 or, equivalently, GCD(m, fm Y 2 1): 1
for 1 £ 7 < n, then

are all m-integers

{Bf(n, 7 +1(@) }"”
fn, §) + 14i=0

{Bj+1(x)}f
Jg +1 j=0

is an e -sequence with natural shift (ra;(m), rBy(m), y(m)). Here, n is a nat-
ural number.

and

Varieties using these results can easily be made. For example, in Theorem
12, since x is an m-integer, —x is also an m-integer, and it follows that
{EQ+1($) - Eﬁ+1(‘$)¥”
g+ 1 =0

is an ¢, -sequence. Here, the even powers of x are missing since
Biy1(x) = Bj+1(-x)
Jg+1

is an odd function of x. By the same reasoning

Biy1(x) + Bjp (-~
=

j=0
is an e¢,-sequence. Here, the odd powers of x are missing since
B;jy1(x) + Bjy1(~x)
Jg+1

is an even function of x. Similar remarks can, of course, be made concerning
the Euler polynomials.

7. Binomial Rings

As has been seen, the Product Theorem allows for various combinations in-
volving e-sequences. This will now be investigated.

Definition 5: A sequence {ijLO is said to be well behaved to k where k is a
natural number with respect tom > 1 and o and B integers provided for every
natural number n < k it is an e,_;-sequence with shift (a, B, BZ + y) for 7 =
0, 1, 2, ..., m -1 and it is an ¢;-sequence with shift (o, B, (n - <)a + ¥)
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for 2 =1, 2, ..., n where the conditions to be a shift are satisfied in each
instance and y is arbitrary. This means that y is chosen from the set of all
integers S which is such that if yj3 € S, L + yg € § for © = 0, 1, 2, ...,
n-1and n - 2)a +yg€ S for 2 =1, 2, ..., n and the shift conditions are
satisfied for all values y € S for the given values o and B.

©

Note that if {w;j};., is a well-behaved sequence to k and if k; < k is any
natural number, then {wj};=() is also well behaved to k;. When the phrase
"{wj}7.o is a well-behaved sequence" is used, it will be supposed "to arbitrary
k a natural number." Unless otherwise stated, the shift that will be used for
well-behaved sequences is (ra;(m), rBy(m), y(m)) where r and y(m) are whole
numbers.

One of the examples of a well-behaved sequence for any k a natural number
that has been given is the sequence {Ejk?=0 of Euler numbers with the shift
(ra;(m), rBy(m), y(m)) for r a fixed whole number and y an arbitrary whole num-
ber with m = LCM[my, mp, ..., mg] > 1 with my, mp, ..., my natural numbers.

It is clear by the Product Theorem that the '"product"

i Yoo olvitioo = {ujvi1- )

of well-behaved sequences all with respect to m, a(m) and B(m) is also a well-
behaved sequence. Indeed, it is this that motivated Definition 5.

Definition 6: Let k, m = LCM[my, my, ..., my] > 1 and my, my, ..., my be natural
numbers. Let

k .
R(m) = {(xo, Tis eees xk)|x0, Lys .5 X are all m-integers}
and suppose

k
(xo’ x]_: se ey xk)’ (yO’ yly ce e yk) € R(TfZ).

Then
(a) (xo, Lys wees x) = (yo, Yps cees Yy) provided z; = y,; (mod mk)
for 0 < 7 < k;
(®) (o> @5 eees T2) + (Ygs Yys cves Yp) = (@g + Ygs Ty F Y15 vves T T Y3
(c) (xO’ xla cees xk) ° (yoy y19 cses yk) = (xoyoa xlyl’ coes xkyk);
(d) If o is any m-integer, oa(xg, Ty, ..., Tp) = (0Xy, 0Ty, ..., OTg);

(e) Let n be any integer. If x?, x;, ..., a7 all exist (mod mk), then
(Xgs Xps woes 2" = (xF, x}F ooy TP

s 1, ooy

It is clear that R(ﬁ) is a commutative ring with identity e (1
) and, fur-

1). R(X) is called the ring of (k + 1)-tuples of m-integers (mod m
thermore, by the Product Theorem, there exist subrings B(ﬁ) of R(
if (xo, Tys woes x) € B(:) then

k
ﬁ such that

k .
6D 3 GO (5)e; 20 (mod my .

i=o0
Any such subring of R(:) is called a binomial ring.
Let {w;}7_, be a well-behaved sequence. It is clear that
Wk, 00 Wk, 12w e Witk )
generates a binomial ring. These observations establish
Theorem 13: Let {xij};=0 for 1 £ 7 <t all be well-behaved sequences to k with

respect to m = LCM[my, my, ..., my] > 1 and fixed a(m) and B(m). Let g(xy, x2,
...s ;) be a polynomial with m-integer coefficients. Let Yi; = Tifk,4)- Then
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(10> Y205 ~ovs Yt0)s FWi1s Y215 =5 Y1)s vvoes Wik s> Yoks -=v» Yyz)) is an
element of a binomial ring.

Definition 7: An element (xo, Lys eees Ly) € R(;) is said to be principal pro-
vided (xox ces Xy, m) =

It is clear that if x = (xo, Tis eees X) is a principal element of R( >
then {x, x2, 3, ...} is a cyclic group under multiplication. Furthermore, it
is the principal elements that have multiplicative inverses.

Suppose that {w;}7-o is a well-behaved sequence to k with respect to m =
LCM[my, mys «uey my] > 1, a(m), and B(m). Suppose also that {a;}, {b;}, and
{Zq} are all sequences of whole numbers. Then {wJ+b } is a well-behaved
sequence to k. Let o;, B;, ¢;, d, and g; be any m—lntegers It follows that

(38) {((Zj E} inlngjfb% +—9i>> +d+ fbi> o

is well behaved to k with respect to m, o, and B. Here, the sum and the prod-
uct are finite and f = 0 (mod mk) . Other wvariations besides (38) <can, of
course, be given.

As has been seen, {EJ}?=O is well behaved to any k a natural number for
m > 1 an odd number with shift (ra;(m), rB8;(m), y(m)) for r and y(m) whole num-
bers.

As an example of a binomial ring constructed from the Euler numbers, let
m =5 = LCM[5] and k = 3. Here, using the natural shift

B3 §) = 3 = HrB) + h(5)VY + r[h(5)19] + ¥(5)
(3-4)5+4+1=16- 4j,

©

where » = g = y = 1. Here, y was chosen to be 1 since, for even y, the corre-
sponding Fuler number is 0, and this is trivial. Other choices can, of course,
be made for »r, g, and y(m). For the above choices,

F16=19391512145%=20 (mod 53),

Eip=2702765 =15 (mod 5%),
Fg=1385 =10 (mod 53),
Ey =5 =5 (mod 53).

Thus, 3
(20, 15, 10, 5) is a member of a binomial ring B( ).

Since (x, x, x, ) is also a member, it follows that
(20 + x)* - 3(15 + )" + 3(10 + x)* = (5 +x)" =0 (mod 125)

for n any whole number and x any integer. 3
To construct another element of such a B(S), let » = g = 1 and vy = 3. Then
f(3, 4) = 18 - 44, so that

Fig=-2404879675441=59 (mod 125),
Ej, =-199360981=19 (mod 125),
E19=-50521 = 104 (mod 125),

Eg = -6 1 = 64 (mod 125).

1]

1l

Thus, 3
(59, 19, 104, 64) is a member of a B(%).

Combining this with the previous element, for x and y any integers, m and #n any
whole numbers,
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(20 + 2)™(59 + y)* - 3(15 + x)™(19 + y)" + 3(10 + x)" (104 + y)”"
- (5 4+ x)"(64 + y)* = 0 (mod 125).

This can actually be made a little stronger. If
(20 + x, 15+ x, 10+ x, 5+ «x) and (59 + y, 19 + y, 104 + y, 64 + y)

are both principal, then m and #n can be any integers.

8. Some Additional Results with (mod{LCM[m,, my, ..., m;11™

The examples in this paper have been concerned with congruences (mod m™).
The case, with m = p = LCM[p] and p a prime number, is, of course, well known
in connection with Kummer's congruences. Some additional examples will be
given here.

The natural shift (a(m), B(m), y(m)) with m = LCM[my, mp, ..., mz] will be
used. Here

(39) a{m) = ra,(m), B(m) = rpy(m),

with
(40) a1(m) = pile@my) + A(me) 7' + 81 = rolé(my) + h(mp)192 + s,
= = r, [¢(my) + h(my)]% + s,
and
(41) By(m) = ri[h(m® + 51 = rolh(m)I?2 + 55 = «-v = 2, [L(mI]7* + s,
for some integers rj, Yy, ..., Py, S1s Sp, -..5 Sty and some mnatural numbers
gis gps +-+5 Ji. As was remarked earlier, special care is needed for any of

the »'s or s's to be negative. It will be supposed that aj(m), Bi(m), r = 0
and aj(m) # By(m) to keep the results from being trivial.

First, an example using Theorem 3 will be given. Let m = 15 = LCM[3, 5]
and n = 3. In this case, ¢(3) = 2 and ¢(5) = 4 so that 7|, r,; 815 8535 g1 g,
are required such that

(42) 2+ 10 + 5, = 2[4+ 1192 + 5, and r) 19" + 5, =p, <192 +5,.

Clearly, a choice is ry = 2, rp, = 1; 871 =0, 8p = 13 g1 = gp =1 and r = 1 so
that a(m) = 6 and B(m) = 2 so that f(3, J) = (3 - J)6+ 25+ v =18 - 45 + v
so that Theorem 3 gives

3 .
(43) > (—l)l<§)E18_4j+Y = 0 (mod 153) where y is a whole number.
Jg=10
Evidently, other choices for r;, ry, S1» S», g1> go in (41) can be made.
On the other hand, if m = 15 = LCM[15], then

F(3, §) = (3 - Hrle(15) + k(1517 + r[h(15)]§ + v.
Let » = g = 1 so that
G, 3y = B -DO) +4+y=27-8] +v
and
3 .13
(44) ‘ZO (“1)1(j>E27_8J’+Y =0 (mod ].53).
i=
An example using Theorem 7 is given by m = 35 = LCM[5, 7]. Here, ¢(5) = 4,
h(5) = 1, ¢(7) = 6, and h(7) = 1 so that r;, ry, 51, and s, are needed such that
51 + 81 = Try + 89,

(45)
I’1+.5'1 =I‘2+82= (Here, gl = go = 1.)
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A choice for these numbers is r) = 3, r, = 2, s; = 0, and s, = 1. This gives
ay(m) = 15 and By(m) = 3. Choose r = 1. From Theorem 7, it is required that
(35, 23*Y*1 _ 1) = 1 and (1 - §)15 + 37 + y + 1 is even. In this case, n = 1.
A choice for y = y(m) satisfying this is y = 6. Thus, Theorem 7 says that

{'522—12j

Bao-124
22 - 127

1 1
i1
are both 35-integers and -1 J(.
}j=o & jg%( )z
Notice that another congruence (mod 35) can easily be given by letting m = 35 =
LCM[35]. 1In this case, ¢(35) = 24 and A(35) = 1. Thus, a choice of a(35) = 25
and B(35) = 1. To satisfy the hypothesis of Theorem 7, it is required that
(35, 21"+l 1y = 1 and (1 - 4) =25+ +y+ 1 =26- 24+ beeven. y =0
works. Thus, according to Theorem 7,
Bog-2u; \1 ! ;11\ Bag-2u;
__£0o7etd 5 —1)d S A
{26 = 24j}j=0 are 35-integers and 2, (-1) (7)76 =247
More generally, let a and b be natural numbers such that m = LCM[a, b] > 1
is odd. Then it is required to find r;, 7, 81, Sy, for g; = go = 1 such that

rilo(a) + h(a)] + sy = ra[o(b) + h(D)] + 53,

~13; = 0 (mod 35).

0 (mod 35).

i

rih(a) + sy = roh(b) + s5.
A choise for r; and s; satisfying this is
CLoMIe(a), $(B)]

r) = (a) and s; = 0.

For this choice,

r LCM[¢(a), ¢(b)]1[¢(a) + h(a)l
¢ (a)

o (m)

and
_r LeM[¢(a), ¢(b)]Ih(a)
B(m) - s
b (a)

so that, by Theorem 7, if
ir LCM([¢(a), ¢(D)] h(a)

+y+1
(LCM[a, b1, 2 (@) - 1)= 1 for 2 =1, 2, 3, vecs M,
then fi )j(n> B{rum[MaL¢WHj+anm““ﬁg¢wnhW)+Y+H
(48) -7 ("
A . LCM[¢(a), b)1h(a)
i=o T Lenle@), ey )g + T @, oG

¢ (a)
= 0 (mod{LCM[a, b1}*). |[Here, vy = j(m)].

Notice that since there exist a and b such that
LCM[¢(a), ¢(D)] = ¢(LCM[a, B])

(for example, a = 15 and b = 35) it follows that (48) is essentially different
from what would be obtained simply by letting m = LCM[m] for m = LCM[a, D].
The reader might enjoy examining the congruences obtained from

105 = LCM[105] = LCM[3, 5, 7] = LCM[15, 7] = LCM[21, 5]
LCM[3, 35] = LCM[15, 35] = LCM[21, 35] = LCM[15, 21]

m

for these various LCM-partitions of 105.
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Continued from page 334

Our home during the Conference was a University dormitory. John Burnet Hall, formerly a hotel, and still
providing the comfort of such. Colleges and Universities have the reputation of offering dull, institutionalized fare.
Our food, taken at the dorm’s cafeteria, constituted an enjoyable counterexample.

St Andrews is an ancient institution. And during its nearly six centuries of existence, it has maintained
vigorous scholarly impact across the whole academic spectrum. St. Andrews has been called “a gem of a Univer-
sity”—uniquely Scottish by history and beautiful location, yet unusually cosmopolitan.

The Conference’s social events rounded off, and enhanced, our academic sessions. The traditional mid-
conference’s afternoon excursion took us to Falkland, a Renaissance Palace, which grew out of the medieval
Falkland Castle. At once did we get lured into the quaintness of an historically rich palace and became enchanted
by the charming multi-coloredness of the garden.

To convey the congenial and happy atmosphere at our Conference—dinner adequately would require a
vocabulary far richer than mine. Interspersed with inspirational short talks and remarks, animated by delicious
banquet fare and, most of all, by having our whole group gathered together, it was simply delightful.

And, finally, the Conference itself.

Erudite and always carefully prepared papers ranged over the heights and depths of “purity” and “applic-
ability,” once more illustrating the startling way in which these two facets of mathematics are duals of each other.
And while we speak with many different accents, we understand each other on a much more significant level.
Almost immediately, friendships blossomed or ripened, as the love of our discipline and the enthusiasm for it were
written over all the faces of the “Fibonaccians” as some of us like to refer to ourselves. That one week in Scotland,
kindled by the serenity of the Scottish landscape and enhanced by the spirit of our Scottish hosts and co-mathema-
ticians, gave us experiences which were both mentally enriching and personally heartwarming.

Finally, it was “farewell.” But it is with much happiness that we can say: “Auf Wiedersehen in two years at
Pullman, Washington.”
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