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1, Introduction 

Euler !s $-function $(m) for m a natural number is defined to be the number 
of natural numbers not exceeding m which are relatively prime to 77?. Euler?s 
Theorem states: If m is a natural number and a is an integer such that (a, m) = 
1, ttfen aHm) E 1 (mod m) . It is well known that if m > 1 and 

is mfs unique representation as a product of pairwise distinct prime numbers, 

the" • < - > - ( > - £ ) ( ' - £ ) - ( ' - £ ) • 
For a discussion of Eulerfs ^-function, see [19], pages 180-83 and 185-90. For 
clarity of notation, 

GCD(a, b) = (a, b) 

occasionally will be used for the greatest common divisor of a and b* Also, 

LCM[a13 a2, ..., at] 

will be used for the least common multiple of ai, a<i> ..., at. As will be seen, 
the ^-function is useful for generating sequences of rational numbers which are 
used to construct generalized Kummer congruences. 

This paper is concerned with sequences {UJ}-Q of rational numbers. It 
will be supposed that each such rational number is written as a quotient of 
relatively prime integers. A rational number so written is said to be in 
standard form. It is immaterial for this discussion whether the denominator be 
positive or negative. 

The purpose of this paper is to develop a method which will generate 
sequences of rational numbers (en-sequences) which satisfy Kummer!s congruence 
(see line 9 in Definition 3) and especially Theorem 7. The sequences are 
manifold: they include Bernoulli, Euler, and Tangent numbers as well as 
Bernoulli and Euler polynomials. Some additional applications will also be 
given. For example, Kummerfs congruences involving reciprocals of Bernoulli 
(Theorem 9) and Euler numbers (Theorem 8) will be given. A ring structure for 
some of these sequences will be observed (section 7) , and finally some 
additional examples will be given (section 8)• 

The Bernoulli polynomials {B -(x)}J=Q are defined by 

text ^ „ , NtJ' (1) ^n-^-^h' j = o 

and the Bernoulli numbers {Bj}T=Q are defined by the generating function 

(2) - r H " = £ Bi IT-

ex - 1 j=0 0 -

See [2.1], pages 167 and 35. 
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A rational number a in standard form is a p-integev for the prime number p 
provided the denominator of a is relatively prime to p. See [1], pages 22 and 
385. Rummer's congruence says: If p is a prime number and k t 0 (mod p - 1) 
where k is an even natural number, then B^/k is a p-integer and 

(3) 7 * \ = T" (modP)-
k + p - 1 k 

In the paper [11] Fermat?s Little Theorem was generalized to sequences 
{ujl^Q °f rational numbers which include sequences of the form {aJ}J=0 where a 
is a rational. Basically, [11] investigated sequences {uj}j=0 having the prop-
erty Up E Ui (mod p) for p a prime number. It is to be observed that Up E U]_ 
(mod p) can be formed umbrally from ap E a (mod p ) by identifying superscripts 
with subscripts and changing a to w. Here congruences (mod mn) are investigated 
with m > 1 a natural number. 

Definition 1: Let m > I be a natural number and let a be a rational number in 
standard form. The rational number a is said to be an m-integev or to be m-
integval provided the denominator of a is relatively prime to m . If m is a 
prime number, then of course a is simply a p-integer. 

The main results of this paper follow Theorem 1. However, Theorem 1 is 
important for Definition 3. See the remarks immediately following Definition 
3. 

Definition 2: Let m > 1 be a natural number and suppose m = p^p^2 ••• P^ is its 
unique representation as a produce of pairwise distinct prime numbers. The 
height him) of m is defined to be 

(4) h(m) = max (an-) . 
l < j < t J 

If m = 1, then h{m) is defined to be 0. 

Theorem 1 follows from results in [9] or can be easily proved directly. 

Theorem 1: Let m > 1 be a natural number and suppose a is an m-integer. Then 

(5) a * W + *('»>_ a*(*) = o (mod m). 

If m - p a prime number, then 
/Z(T?7) = h(p) = 1 and <|>0?7) = (j)(p) = p - 1 

so that Theorem 1 says ap - a E 0 (mod p) , which is Fermat * s Theorem. If (a, 77?). 
= 1, then Theorem 1 is Euler*s Theorem. 

Using Eulerfs Theorem, if a is an 777-integer, v an integer, g a natural num-
ber, and if v is negative I la is also an 777-integer, Theorem 1 and induction 
give 

(6) arHM + Km)]' _ armmn° = 0 (mod 777). 

To see this, note that ar is an m-integer whether r is positive or negative. 
From (6) for n a natural number with r and k integers, 

(7) ak^aTMml + Mm)}* _ ar[Km)]*y = 0 ( m o d m W ) > 

(See the second paragraph after Definition 4.) 

Here, a and 1/a are both 777-integers if either k or v is negative. This says 
that 
(8) ^(.D^^y-^t^^^wF^tM^Fj^ E 0 ( m o d w , ) o 

j = 0 ^ 7 

Viewing (8) umbrally gives the inspiration for the following Definition. 
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Definition 3: L e t m = LCM[T7Z1(, m2> . . . , mt] > 1 w h e r e 777ls m2, . . . , 77Zt a r e n a t u r a l 
n u m b e r s . The s e q u e n c e iuj}™= o f r a t i o n a l n u m b e r s w r i t t e n i n s t a n d a r d f o r m 
s u c h t h a t e a c h e l e m e n t of 

W ( n - j)a(m) + B W + y ^ ) ) ^ 0 

i s an 77?-integer where 01(777), 3 (w) , and y ( ^ ) a r e i n t e g e r s such t h a t 

/ ( w , J ) = (n - j)a(7??) + 3(m)j + YOH) ^ 0 

i s an e n -S£^w£nee u i t / z s / z i / t (01(777), 6 (m) , y(m)) with respect to m -provided 

(9) ^(-DjQ)uf(n}j) = 0 (mod 7 7 7 ^ 2 . . . 77??*), 

where ri\> n2> . .., n are whole numbers such that n^ + n2 + ••• + nt = n. This 
is5 of course, equivalent to 

i > i W " w ( n ) .} =0 ( , o d ^ . . . m ? ' ) . 
j = 0 w 7 

In other words, n\> n2, ..., nt forms a whole number partition of the natural 
number n. (See the comments immediately following Theorem 8 and Definition 4.) 
It is easy to see that (9) can be replaced with the modulus 

{LCM[7??l5 77725 . . . , 777t] } n . 

(See the third paragraph below.) It is this form of (9) that will be used. 

To say, for two rational numbers a and b, that a = b (mod m) for 777 > 1 a 
natural number simply means (a - b)jm is an m-integer. 

Theorem 1 does, as seen above, generalize Euler?s Theorem. However, Theo-
rem 1 is not the main generalization with which this paper is concerned. A 
sequence that is an <2n-sequence with shift (a(777), 3(w)» y(m)) could be called a 
generalized Euler sequence. Thus, this paper is not so much concerned with 
congruences of the form ar + s = av (mod m) (see [5], [7], [9], [15]) as it is 
with sequences that satisfy (9). Kummerfs congruences are related to congru-
ences of the type (9) with the modulus 

{LCM[777l5 ml9 . .., 7rzt]}n = mn. 

Because of the special role that Euler?s ^-function plays in finding many such 
congruences, it seems appropriate to refer to sequences named by Definition 3 
as generalized Euler sequences. 

In light of (8), one possible choice for 01(777) and 3(77?) is 

a (m) = Pa i(m) and 3(777) = r&i(m) 

where r i s an i n t e g e r and a 1(777) and 61(777) a r e such t h a t , f o r some i n t e g e r s T\9 

r2, • • <• s vt 5 s l > s 2» •••> st a n c* some n a t u r a l numbers g±, g2, . . . , gt; 

I ' l U O l ) + Mmi)}91 + sl = r2[<S>(m2) + h(m2)]92 + s2 

= rt[<t>(mt) + h(mt)]gt + st = 04(777) 
and 

r^himO]91 + s i = r2[h(m2)]92 + s2 

= . . . = rt[h(mt)]9t + st = ex(m). 
To keep t h i s s h i f t from b e i n g t r i v i a l , 04(777), 31(777), r * 0 , and ax (777) * B i (m) . 
Th i s s h i f t ( a ( m ) , 3(777), y W ) i s a natural shift. I t i s c l e a r t h a t f o r a n a t -
u r a l s h i f t 

Z ( - D J ' ( ^ ) ^ f ( n , j ) = 0 (mod m^?772
2 . . . 777?*) f o r an 777-integer. 
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The reason for th i s i s 
(aa(m) - a^m))ni = 0 (mod m?*) 

so that 
t 
n (aa(m) - a^m))ni = (a a W - a

SMfl + n2+" 
i= 1 

= J2 (-DJ'(")a/(w,</) = 0 (mod m " 1 ^ 2 ... < * ) , 
3 = 0 v^ 7 

where n,, n2, . .., nt are whole numbers such that n1 + n2 + ... + nt = n. Note 
that a(/??) and $(jn) depend upon m^, m^, ...5 ̂  ; Pj, ̂ 2* ••••> ^t > sl> s 2 ' •••> 
s^ ; and g\ , g^* •••>#£• Special care is needed when any of the r's or sfs are 
negative. Note also, since the expression is divisible by m^lm^z . .. m^* for 
any whole number partition of n = n^ + n2 + • • • + n-t, it will be divisible by 
[LCM[tfZ]_, 7772, ...j mt]]n s o t n a t "t̂ j}7TO=o being a n ̂ -sequence with respect to 
77? = LCM[w1} 77725 . . . , 777̂  ] implies that 

i.(-^(^)ufin,d)
 E °  (mod{LCM[m1, m2, . . . , mt]}n) 

and conversely. Thus, for each way of writing 77? as LCM[^i, ̂ 2* ...s wt] there 
is the possibility of a separate congruence (mod mn). The simplest way of sat-
isfying this is, of course, m = LCMfw] . From now on, m will denote LCM[#?]_, 77?2J 
..., 77?̂] for some natural numbers TT?̂ , 77725 . .., 77?t. As will be seen, other ways 
of writing 777 besides 777 = LCM[TT7] do indeed lead to different expressions E 0 
(mod 777n) . See section 8 for some examples. [mi , 77725 . . . 5 mt ] is called an LCM-
partition of m when 777 = LCM[mi, 77725 ...5 rnt] and 777ls 7772, . . . , mt are all natural 
numbers > 1. 

Definition 4: Let {UJ}J=0 be a sequence of rational numbers written in standard 
form such that each element of {W(n_ j)a(m) + $(m)j + y(m) }̂ _ i-s a n ̂ -integer where 
a (777), $(777), and y(777) are integers such that J 

f(n, j) = (n - j)a(m) + $(m)j + y(w) > 0. 
If 

n 
X (~1)J( ')uf(n 7") E °  (mod 777̂ ), where 777 = LCK[mi9 mi* ...5 mt] > 1 
j = 0 \J / J ' JJ 

for some natural numbers 777 ̂, 77725 . . . , mt} then this congruence is a generalised 
Rummer congruence. 

From the above, if {UJ}J=Q is an en -sequence with shift (a (777), $(m) , y (77?)) 
with respect to 777, then it satisfies a generalized Kummer congruence. 

A remark on §(jri) and h(jri) is needed: these functions are convenient to use; 
however, if for some natural number 777 > 1 there exist A(m) and B(m) such that 
for every 777-integer a, aA{jn) - aB^ = 0 (mod 777), then .4(777) could be used in 
place of (j)(777) + h(m) , and 5(77?) in place of h(jn) . Consequently, many of the 
results in this paper can be generalized somewhat by just such a consideration. 
However, because of the convenience of finding and working with 0(777) and h(jri) , 
the results are stated in terms of these two functions. Furthermore, some of 
the parity properties of §{m) are used in the proof of Theorem 2, so it was 
felt that it was better to state the results in terms of natural shifts. 

There exist sequences {UJ}J=0 with shifts other than the natural shift 

(r[<$>(m) + h(m)]g, r[h(m)]g, y(m)) . 
For example, using Theorem 5, if p is an odd prime and a is a p-integer such 

that , , ( 1 Y 
(a, p) = 1 and < > for 1 < ̂  < n 

I (i - j)ap + aj)-=() 
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a re a l l p - i n t e g e r s , then the sequence {l/j}J=l i s an en-sequence with s h i f t 
( a p , a, 0) with respec t to p , The condi t ion 

1 
is a p-Integer for 1 < i < n 

(i - j)ap + aj 
is equivalent to p > n. Thus {l/j}J=1 is an en-sequence with shift (ap, a, 0) 
when p > n, Here 77? = LCM[p] . 

From the above definition, it is clear that linear combinations of en~ 
sequences with common shift (aim), 6(777), y W ) with respect to the same natural 
number m > I are also en -sequences with shift (a (777), $(m)s y (m)) when the 
coefficients defining the linear combinations are all 777-integers. In parti-
cular, multiplying each term of an ^-sequence by an 7??-integer gives an en-
sequence. 

It is possible to couch condition (9) in terms of the difference operator 
A, here defined by Aux = ux + t - ux. If 

x = n 6(777) + y(777) and t = a (777) - 6(w), 

then it turns out that 
n 

&nUx = X (-1)J(7;W(«,€7)-
j = 0 x w ' 

Note that if 
a (777) = <|>(777) + h(m) and 8(m) = h(jri) 9 

then the increment t is just $(m) . This will be returned to later in connec-
tion with the Factor and Product Theorems, 

Let. {Zrj}™=0 be the sequence of Lucas numbers. It is well known that 

(10) Ld = (1 \ ^)J + (^Y^f > J * 0. (See [13], page 26.) 

Although (10) represents Lj in the form aJ + 6J» neither a nor 6 is rational. 
By the main theorem of [11], {Lj}"j=0 is an ex-sequence for any prime number p 
with shift (p, 1, 0); i.e., for p a prime number, Lp = Lx (mod p) . However, 
simply because Lj is the sum of powers of (1 + v5)/2 and (1 - v\5)/2, this is 
not sufficient for {Lj}JB 0 t o be an en-sequence with arbitrary shift. Indeed, 
{Lj}J=0 is not even an e2 -sequence with shift (p, 1, 0) for the prime number 
p = 3 since L6 - 2L^ + L2 ^ 0 (mod 3 2 ). Hence, it does not follow that if each 
term of the sequence {u }^= 0 of rationals is of the form 

Uj = X^ + x| + • • - + Xg 

then the sequence is an e„-sequence with even reasonable shifts. 

2. Buler Polynomials and Numbers 

The Euler polynomials En (x) of degree n and argument x are given by the 
generating function 

(11) -^ r - J] - ^ — . (See [21], page 175.) 

A well-known formula involving the Euler polynomials is 

(12) £ (-D^'V1 = l^n(^ + 1) + (-1)^„(0)}, 
i- 1 Z 

where n = 1, 2, 3, ..., and N = 1, 2, 3, ... . (See [16], page 30.) 
Using the notation Introduced in Definition 3, replace n by fj = f(n5 j) in 

(12) so that 
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(13) £ (-l)N~HTj = ±{Ef. (N + 1) + (-l)NEf. ( 0 ) } . 

To (13) , apply the opera tor 

£ (-!>'• QK' 
j = 0 V ^ 7 

so t ha t 
T'Z 71/ 

d4) Z c - i W ^ Z c - D " - ^ ^ -
j = o w 7 i = l 

Expanding the l e f t s ide of (14) gives 

(15) £ ( - D J ' ( ^ ) ( - D / v - 1 [ a ^ - ( 2 a ) ^ + (3a)^' - + . . . + ( - l ) * " 1 ^ ) ^ ] 
j = 0 V ^ 7 

= ( - D ^ - ^ a ^ ^ t a 0 1 ^ - a ^ > ] n - (2a)Y(w) [ (2a)a ( m ) - ( 2 a ) 6 ( w ) ] n 

+ - . . . + (-l)N-l(Na)Y(m)](Na)a(m) - (/i/a)^w) ] n } . 

Now if a(m) and 3(w) are such that 

[(ia)a(m) - {ia)^m)]n = 0 (mod mn) for i = 1, 2, . . . , N 

where m = LCM[tf?i, m^_, ...> w t ] ' which they will be for the natural shift (a(m) 9 
BOH), y(^))> then by (7) for aY(/7?), (ia)a(m), (ia)6(m) all w-integral for i = 1, 2, 
3, ..., N, (15) will be E 0 (mod mn). Because of the conditions needed for all 
these numbers to be m-integers, it is supposed that r > 0 and y(jn) > 0. 

Suppose that a(77?) = rai(m) and $>(m) = r$i(m) . For m^ = 2 where i = 1, 2, 
. .., £, the parity of f(n, j) is the parity of vv^ + y + npsj, which will be 
even if r and y(jn) are both even. On the other hand, if m^ > 2 for some i = 1, 
2, ..., £, all of the numbers f(n9 j), 0 < j < n, have the same parity. To see 
this, use the fact that (J)(̂ i) is even when m^ > 2. From (15) and (14), 

(i6) ii:o(-i)'GK( n , J"V.j)^+ ! > + ic-1^ ^^^(^^'"'V^^o) 
= 0 (mod mn). 

It is well known that, for f(n, j) even, Ef(ntj^(0) = 0. (See [21], page 179.) 
Now f(n, j) is even when 3i(^) is odd and np + y(m) is even when Si(w) is even 
and y(m) is even. 

Next, suppose that m is odd so that 1/2 is /77-integral. In this case, for 
N E -(1/2) (mod mn) and f(n9 j) odd, then 

Enn,3'){i) = °> 
whereas, if f(n, j) is even 

Efinfj)(l) = 0 [letting N = 0 (mod /7?n)]. (See [21], page 179.) 

Hence, in (14), 

£ (-l^Q^.^CO) = 0 (mod /a*) 

when /(n, j) is even or when m is odd. Since n is a natural number in (12) and 
f(n, j) replaces n, it follows that f(n, j) > 1. This establishes the following 
theorem. 
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Theorem 2: Le t m = LCM[T??1S m2, . . . , mt] > 1 w i t h 777 x , ???2, . . . , mt a l l n a t u r a l 
numbers and a , y (777) , and x a l l 77?-integers . Suppose 

f(n, j ) = (n - j)rai(m) + r$l(m)j + y(m) > 1 f o r 0 < j " < n9 

where v > 0 and y(???) > 0. Assume one of the following statements holds: 

(1) m^ = 2 for i = 1, 2, . .., t, and r and y(w) are both even; 
(2) m is even and m^ > 2 for some i = 1, 2, ..., t, $IOTO and y(m) are both 

even; 
(3) m is even and m^ > 2 for some i = 1, 2} . .., t, and nr + 7(777) is even 

but 3i(w) is odd; 
(4) /7? is odd. 

Then i& Ef(n, j)(x)\- = Q a r e a H m-integers and {aJEj (x) }^= Q is an en-sequence 
with the natural shift (a (77?), $(777), Y ( W ) ) * 

T̂ he hypothesis of Theorem 2 cannot be weakened to simply: 777 > 1 is a natu-
ral number. To see this, let 7?? = 4 = LCM[4] , n = 1, ̂  = r = y (???) = 1. None of 
the four hypotheses is satisfied if T\ - 1 and s^ = 0. If the weakened hypoth-
esis is valid, then 

(17) E (-l)J'(^5-2j^) = #5(*) "
 E3^ 

J = 0 •*h 11^2 1 \ / QT*2 / 5 5x* ^ bxA 1\ / 3 3^rz , 1\ _ n . A ., lxb - -y- + — -j - (̂d — + -^J = 0 (mod 4) 

which is false. 
For 77? > 2 and 7?? odd9 the coefficients of the Euler polynomials are all 777— 

integers. To see this, use 

(18) En(x) = 2"nX(^)(2^ ~ Dn-jEj, 

where {Ej}^=0 is the sequence of Euler numbers. The Euler numbers are all 
integers and, furthermore, Et = 2tEt(l/2). (See [21], pages 177, 39, and 42.) 

The above observations along with Theorem 2 establish Theorem 3. 

Theorem 3: Let 77? = LCM.[mi9 m2y . .., mt] > 1 with 77?ls 7T725 ••-, mt all natural 
numbers and a an 777-integer. Suppose 

f(ns j) = {n - j)rai(tn) + r&i(m) J + Y(T7?) ^ 1 for 0 < j < n9 

where v > 0 and y(???) > 0. Then {a*]Ej}™= is an en-sequence with the natural 
shift (a(777), 6(777), Y(T?7)). 

The Euler numbers form secant coefficients since 

sec^= £ t-iy-2±—9 
j = o (2j;« 

which is convergent for \x\ < it/2. The number #2rc + l = °  f o r n - ° 9 (See [1&] > 
pages 202 and 203.) 

3. Bernoulli Numbers and Polynomials 

The above results open the way to exploration of Bernoulli polynomials and 
Bernoulli numbers with respect to forming en-sequences. A useful relationship 
is 

07-Z+ 1 

(19) En(x) 
n + 1 

Bn + l \ 2 ) " Bn + l\2) for n = 0, 1, 2, ... . 

(See [21], page 177.) Using this and the hypothesis of Theorem 2, we have 

>«7 + W «°> { f ^ h - m - %•.(!)]}• 
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i s an en-sequence w i t h n a t u r a l s h i f t (a(m) , 3(777), y(m)) f o r t h e n a t u r a l number 
77? = LCM[777l5 77?2s • • •» 777̂ ] > 1. H e r e , b o t h a and x a r e m - i n t e g e r s . 

In (20) l e t x = 0 so t h a t 

Bi+A\) = ( ^ 7 1 " L ) ^ + 1 a n d ^" + l ( 0 ) = Bi+19 f ° r «/ = 1» 3 , 5 , . . . . 
(See [ 2 1 ] , page 171 . ) 

A f t e r s i m p l i f i c a t i o n and u s i n g # 2 j + l = 0 f ° r <7 = 1» 2 , 3 , . . . , (20) g i v e s 

Theorem 4: Le t 777 = LCM[TT7I, 7772» . . -> w t ] > 1 w i t h 7771, 77?2> . . . » 777̂  a l l n a t u r a l 
numbers and l e t a be an 7??-integer. Suppose 

f(n, j) = (n - j)a(7??) + S(m)j + y(m) > 1 f o r 0 < j < n, 

where v > 0 and y(m) > 0. If m is odd, then 

U I f(n, 3) + lfjmQ 

are all m-integers and 

(2D {(2, - - !)«**» ^ } ; o 

is an en -sequence with the natural shift (a(m) , $(777), y(jn)) . 
It is important in working with these £n-sequences to first put the terms 

in standard form and then reduce the expression (mod mn). 
Theorem 4 generalizes some well-known results. With the hypotheses of 

Theorem 4, (21) says 

J = 0 
(22) Y f-lV /^ — - V̂ [iH<KM) + Mm)]y-rl 
^ ; /~y J \J7 [ r [*("?) + /z(/?0F - r[h(m)]g]j + k 

= 0 (mod 7?7n) , 

where fc = r [ $(777) ]^n + Y(777) + 1 . Here m = LCM[7??] . Th i s l a s t c o n d i t i o n i s e q u i -
v a l e n t t o s a y i n g k > p[$(m)]9n. If m = p (a pr ime n u m b e r ) , r = g = 1, t h e n (22) 

g i v e s (?ip~l)l]'*k)ji 

<«> t^(T (P:l'p;rk -- 0 <- p-). * > * - D». 
The Bernoulli, Genocchi, Lucas, and Euler numbers are closely related (see 

[14]). In particular, 

(24) Gn = 2(1 - 2n)Bn and Rn = (1 - 2^"1)5n, 

where Gn and i?„ are the Genocchi and Lucas numbers, respectively. With the 
same hypothesis as Theorem 4, m = p = LCM[p] and r = ̂  = 1 gives as examples 

(25) £ ( - D ^ l T ^ T T = 0 (»»d p"), and 

L (-DJ'(n) ,„ n-+, / ^ - ^ ^ = 0 (mod pn). 
j-o W/(l - 2(P"1>J + fc-1)((p - l)j + k) 

For a f u r t h e r d i s c u s s i o n of t h e s e number s , s e e [6] and [ 2 5 ] . 

4. The Factor and Product Theorems 

I n (21) i t i s c l e a r t h a t {2J + l - 1}J= 0
 i s a n ^ - s e q u e n c e w i t h n a t u r a l s h i f t 

(a (777), 3(777), y(7??)) f o r t h e n a t u r a l number 7?7 = LCM[777i, 7772, . . . , mt] . T h i s s u g -
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g e s t s t h e p o s s i b i l i t y of " f a c t o r i n g 1 ' a s equence of t h e form {VLAV A } • _ n . To t h a t 
J • J d d J - U 

end, consider 
(26) LnuxVx = £ (?)(**"*"*) (A**VKn-i)t), 

where 

(27) A"u, = £ (-l)^W+(?W)t. 
j = 0 V / 

Here, the difference operator is defined by hux = ux + t - ux . (See [10], pages 
6 and ls respectively.) Rewriting (26) using (27) gives 

(28) X (-DJU 
j = 0 W 7 

• £0(*)C?;<-»T j > « — ) ( i 0 (->'(>..<.-,.) • 
To express this in a form needed for e^-sequences, let 

(29) x + (n - j)t = (n - j)a(m) + $(m)j + y(m), so that 

x = n$(m) + y(m) and t = a (777) - 3(w)» 

Substituting these in (28) yields 
n * /n\ 

(3° ) X* ^"1^ w ) U ( " - J)a(m) + S(m)j + yOn^Cn- j)a(m) + 6(m)j + y(m) 
j = 0 Xty ' 

8 ( X ("^ Q)^-j)a(m) + B(m)j + -

- £ 
i = 0 

• Y(m) 

. , 777* 

Using this, the Factor Theorem is obtained. 

Theorem 5 (Factor Theorem) : Le t m = L C M ^ , 77?2s . - . , mt] w i t h w 1 ? 77?2s 
n a t u r a l number s . I f 

(a ) iujvj}C°-=0
 i s a n e n - s e q u e n c e w i t h s h i f t (a(m) , 3(777) , y ( ^ ) ) ; and 

(b) {^J}J -=O i s a n ^ - s e q u e n c e w i t h s h i f t (a(m) , 3(TT7) , (n - i) a(m) + y(m)) , f o r 
i = 1, 2 , . . . , n - 1; and 

(c) {Wj}J= 0 i s an e n _ ^ - s e q u e n c e w i t h s h i f t ( a ( m ) , $(777), $(777) £ + y(m)) f o r i = 
1, 2 , * . . , n - 1, t h e n 

1) I f (jn9 ^na(m) + y(m)) = 1 and {VJ }J= 0 ^ s a n s n - s e q u e n c e w i t h s h i f t (a(m) , 
3 (w) , Y(77?)) , t h e n {wj}J = 0 i s an e n - s e q u e n c e w i t h s h i f t (01(777), 3(777), y ( w ) ) ; 

2) I f (m, ^n3(OT) + T(m)) = 1 a n d { W J } J = O ^ s a n ^ n ~ s e c l u e n c e w i t h s h i f t (a(m)9 
3 0?0, y(m)) , t h e n {7j>j}ro

=0is an e n - s e q u e n c e w i t h s h i f t (a (777), 3 (w) , y(m)) » 

An e x a m i n a t i o n of i d e n t i t y (30) a l s o l e a d s t o t h e P r o d u c t Theorem. 

Theorem 6 (Product Theorem) : Le t 777 = LCM[77?ls /r/2' •••> w^J > 1 w i t h 77?j, W2? 
„ . . , mt n a t u r a l numbers . I f 

(a ) {^j}J=o i s an en_ —sequence w i t h s h i f t ( a(/7z), 3 (w) , $(m)i + y(m)) f o r i = 
0 , 1, 2 , . . . , n - 1; and 

(b) {2;j }J= 0 i s an ^ - s e q u e n c e w i t h s h i f t (01(777), &(m) , (n - i)a(m) + y(m)) f o r 
i - 1, 2 , . . . , n ; t h u s , ^-ujvj^7= Q ^ S a n 0 n - s e q u e n c e w i t h s h i f t (a(m) , 
3(m), Y W ) . 
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Using m > 1 being odd and y(m) > 0 arbitrary, Theorem 4 together with the 
Factor Theorem and Theorem 1 yields 

Theorem 7: Let m = LCM [#?]_, m<i> •-.> m^] > 1 with m\ 9 m^* . .., mt all natural 
numbers. If 

(a) f(n9 j) = (n - j)rai(m) + r$i(m) + y(m) is an odd natural number for 0 < 
j < n; and 

(b) v > 0, y(m) > 0, g is a natural number; and 

(c) GCT){m9 2 - l) = 1 or, equivalently 
/ i r£ i (m)+ y(m)+ 1 v 

GCD(m, 2 X - l)= 1 for t = 1, 2, . . . , n, 

( Bnn,j) + i \n (Bi+i r 
then \~nr{ ., > are a l l m-integers and- \ . > is an ^-sequence with 

'A^j JJ T ^/j = o w "•" -*-/</=o 
the natural shift (a(m) 9 &(m), y(m)). 

In Theorem 7 let m = p = LCM[p] be an odd prime number and suppose v- g = 1 
and k = n + y + 1. Then (c) becomes 

(p, 2i + /c"n - 1) = 1, i = 1, 2, ..., w. 

If (p, 2k - 1) = 1, then fc £ 0 (mod p - 1) since p|(2P_1- 1) by Fermatf s Little 
Theorem. Theorem 7 gives 

This congruence is well known (see [3], [4], [18], [22], [23], [24], [26]). 
The paper [22] has many references to these and related congruences. It is 
clear that Theorem 7 with m = p = LCM[p] does not remove the restriction k t 0 
(mod p - 1). 

In Theorem 7 let m = pt, where p is an odd prime number and £ is a natural 
number. Then 

(j)(w) = <(>(?*) = pt~l(p - 1) and 7z(7w) = 7z(p*) = £• 

Further, suppose that y(m) = y{pt) > 0 , r > 0 , g l s a natural number and n = 1. 
Then Theorem 7 gives 

^ [ p ^ C p - D + t ^ + Y+l Brt9+y+l 
(32) — — E — (mod p*), 

v[pt-l{p - 1) + t]9 + y + 1 rt^ + T + 1 
when (p, 2 t + Y + 1 - 1) = 1. In (32) let t = 1 and y = 2k - 2. This then is Rum-
mer^ congruence with the hypothesis (p, 22?c - 1) = 1. Similar congruences 
immediately follow from Theorem 7 for m = pt and n an arbitrary natural number. 

Repeated use of the Product Theorem allows for variations of the previous 
results. Thus, for m > 1 an odd natural number {a3E^\h Ej+b2 ••• Ej+bt^i=o i s 

an en-sequence with shift (r[$(m) + h(m)]g , r[h(m)]g , y{m)) where p > 0, y(jri) > 
0, a^, a25 ..., at; b\9 b2> ...» b-t are whole numbers and a is an m-integer. 
One application of this is to let 

CL\ = a 2 = ••• = at = 1 and b\ = b2 = • • • = bt = 0 

so that {EJ-}J=Q is an en-sequence. For example, let m = p = LCM[p] be an odd 
prime number and let n = 2. Then, for £ any natural number, 

E2P+y " 2 ^ + Y + I + #Y + 2 E °  (mod P 2 )-

Here, y = y(p) > 1 and r = 1. For example, letting p = 7 and y = 2, this says, 
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a f t e r r e d u c t i o n , f o r e v e r y n a whole number 

40n - 2 • 47n + 5n E 0 (mod 49) . 
It is possible to combine both the Factor Theorem and the Product Theorem* 

Since {1}J= 0 is an en-sequence with respect to the odd natural number m > 1 and 
for j even, Ej (l/Ej ) = 1, it follows that for the natural shift with v > 0, 
y(m) > 0, and f(n9 j) even, for 0 < j < n and { l/#/-(w, j) }J= 0 consisting of m-
integers, then {l/Ej}- even , is an ^-sequence. From Theorem 3 it follows that 

Ef(n,j+i) E Ef{n,o) (mod m) for 0 < j + 1 < n, 

so that if (m9 #/(n>j)) = 1 for any j = 0, 1, 2, ..., n, then {l/#f(n> j)}^ 0 con-
sists of w-integers, This establishes 

Theorem 8: Let w = L C M t ^ , m29 . .., ^t] > 1 with /?7l5 T?^? - • • » ̂ t natural num-
bers ,»be an odd natural number. Suppose 

f(n9 j) = (n - j)rai(m) + r$l(m) + y W 

i s an even n a t u r a l number where r > 0 and y(/72) > 0 . I f (/??, Ef{n, j)) = 1 f°r a t 

l e a s t one j = 0 , 1, 2 , . . . , n , t h e n t h e s equence {l/Ej}- e v e n i s an g n ~ s e q u e n c e 
f o r t h e n a t u r a l s h i f t ( a ( m ) , 3(/TZ)5 y ( w ) ) . 

I n Theorem 8, what i s meant by s a y i n g ( l / ^ j K-even ^ s a n £ w ~ s e c l u e i l c e ? For 
t h a t m a t t e r , what i s meant by s a y i n g {^j}j of the form F ^ s a n £ n - s e c l u e n c e ? Th i s 
s i mp ly means : 

(a ) f(n9 j ) i s of t h e form F f o r 0 < J < n , 

(b) {u f(n ? j ) } - = o a r e a H w - i n t e g e r s , and 

(c ) J2 (~1)J ' ( ^ ) u f ( n , j) = ° ^ m o d m " ) where /?? = LCM[wls w23 •••> w t ] > * w i t h 77?ls 

77?2? • - • s Kit n a t u r a l number s . 

S ince 

fBj+l , «/ + 1\ 
l J + 1 5^ + ! J j o d d 

i s an £ n - s e q u e n c e w i t h s h i f t ( r a 1 ( w ) , P 3 I ( W ) , y ( w ) ) , ^ > 0 and y(m) - 0 f o r t h e 

odd n a t u r a l number 777 = L C M ^ , w25 . . . , tf?t] > 1» Theorem 7 g i v e s c o n d i t i o n s f o r 
{Bj+l/(j + 1)}^ o d d t o be an en-sequence, and [f(n,j) + 1] / ( % n , j ) + 1) w i l 1 b e a n 

m - i n t e g e r when 

GCDL J ^ ) + M - 1. 
V /(w, j) + 1/ 

This implies 

Theorem 9: L e t 7?? = LCM[/??1, m2* <>°»s m t ] > 1 w i t h ml9 m2, . . - , m* a 1 1 n a t u r a l 
numbers and m odd . I f 

(a ) / ( n , j ) = (n - j ^ p a ^ m ) + 2*3 i ( w ) + y(w) i s an odd n a t u r a l number f o r 0 < 
j < n; and 

(b) v > 0 and y(m) > 0; and 
/ irai(m) + Y M + 1 \ 

(c) GCD(̂ /77S 2 - 1) = 1 or, equivalently3 

GCD(m,2 i r B l ( m ) + Y ( n ) + - l i ) . 1 for i - 1, 2, .... n; and 

/ Bf(n, j) + 1 \ • 
(d) (T??, : ) = 1 for at least one j = 0, 1, 2, . .., n, 

\ f(n9 j) + 1/ 
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(fin, j) + l)n U + l)°° 
then <—- > are all m-integers and < — > is an e -sequence with 

I Bf{n,j) + 1 ) j = 0 I #7 + 1 )j = 0 n a t u r a l s h i f t (a(77?), $(777), jim)) . 

5. The Tangent Numbers 

The tangent numbers {Tj }J=Q are d e f i n e d by t h e g e n e r a t i n g f u n c t i o n 

(33) tan x = £ - 4 ^ . 
j = 0 </ • 

It is well known that ^-f = 0, J > 0, and 

(34) T2n-i = (-l)n_14n(4n - 1)-^- is a positive integer. 

For a discussion of these numbers, see [12], page 273. Theorem 4 together with 
these observations gives 

Theorem 10: Let m = LCM[wl5 T^, ...3 mt] > 1 with mi, m2, . . . 9 mt natural num-
bers be an odd number and suppose 

fin, j) = (n - j)ra1(m) + r&i(m)j + 7(777) ̂  1 

for 0 < j < n, r > 0, and y(m) > 0. Then { (- l) ( j '~ 1 ) / 2 ^ } . i s an en-sequence 
with the n a t u r a l s h i f t (pa 1(777), r 31(777), y (77?) ) . 

6. Miscellaneous Resul ts 

A formula analogous to (12) for Bernoulli polynomials is 
N -, 

(35) E tn = ^Ti(Bn + l(N + 1) - Bn + l ) , 
i = 1 

where both n and 71/ are natural numbers (see [16], page 26). Let 

fin, j) = fj = in - j) ra i (777) + 2?Bi(w) + Y(T??), 

where 772 = L C M ^ , m2, . . . , 7771] > 1 and mi, m2, . . . , mt a r e n a t u r a l n u m b e r s . I n 
( 3 5 ) , r e p l a c e n by f- ( so t h a t j j > 0) and t o t h i s a p p l y t h e o p e r a t o r 

so t h a t 
7 = 0 \31 

3f. iN + 1) - S f . 1 

•O+i 
06) E E C - D ' G ) ^ = E ( - D J ( 5 ) 

i= 1 j = o V J / j = o V J / 

Using Theorem 1, t h i s i m p l i e s 
Theorem 11: Le t 7?? = LCM [77? l 9 7772, . . . , 777t] > 1 w i t h m-^, m2, . . . , mt n a t u r a l num-
b e r s , and l e t 

fj = fin, j ) = in - j)ra1(77z) + r$i(m) + y(m) > 1 

f o r 0 < j < n, v > 0 , and y(m) > 0 . I f a; i s an 7??-integer, t h e n 

( ^ . + 1 ( x ) - Bf.+l)-

I fj + 1 / j - o 
a r e a l l 777-integers and 

t J + 1 i j = 0 
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i s an en-sequence w i t h t h e n a t u r a l s h i f t (a(m) , 3 0 ) , y O ) ) . H e r e , n i s a n a t -
u r a l number . 

Now B2k + 1 = 0 f o r k = 1, 2 , 3 , . . . , so t h a t , i f f(n, i ) + 1 > 3 i s an odd 
numbers t h e n 

1"?7^ -N , T > a r e a 1 1 ^ - i n t e g e r s and <—=—-——-> i s an e - s e q u e n c e * 
U ^ ) J ; + i ) j = o w + J- )j=o 

With t h e s e o b s e r v a t i o n s . Theorems 11 and 7 y i e l d 

Theorem 12: Le t w = LCM[w1? m1, **«, mt] > 1 w i t h m\, m2, . . . , mt n a t u r a l num-
b e r s , and suppose 

fin, J ) = in - j)ral(m) + P 3 I ( W ) + y(m) > 1 

for 0 < j < ft, v > 0, and y W ^ 0* Suppose also that # is an ^-integer. If 
fin, «j) + 1 > 3 and /(ft, j) is even for 0 < j < ft, or if 

GCD(w, 2 - l)= 1 or, equivalently, GCD[m, 2 - l) = 1 

f o r 

and 

1 < ^ < n 

{Bf(n, 
Xfin, 

, t h e n 

J ) + 1. 

( x ) \ -

are all m-integers 
y = o 

is an e -sequence with natural shift (rai(m) , r&i(m), y(w0)« Here, n is a nat-
ural number, 

Varieties using these results can easily be made. For example, in Theorem 
12, since x is an m-integer, -x is also an m-integer, and it follows that 

,-+l(tf) - Bj + i(-x)} 

I J + 1 Ij-o 
is an en-sequenceo Here, the even powers of x axe missing since 

Bj + i(x) - Bj + i(-x) 
J + 1 

is an odd function of x* By the same reasoning 

t J + 1 Jj-o 
is an ^-sequence. Here, the odd powers of x are missing since 

Bj+i(x) + Bj + i(-x) 

is an even function of x» Similar remarks can, of course, be made concerning 
the Euler polynomials. 

7. Binomial Rings 

As has been seen, the Product Theorem allows for various combinations in-
volving ^-sequences. This will now be investigated. 

Definition 5: A sequence {Uj}J=0 is said to be well behaved to k where k ±$ a 
natural number with respect to m > 1 and a and 3 integers provided for every 
natural number n < k it is an en_^-sequence with shift (a, $, $£ + y) for i = 
0S 1, 2, . . . , • n - 1 and it is an e^ -sequence with shift (a, $, (ft - £ ) a + y) 
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for i - 1, 2, . .., n where the conditions to be a shift are satisfied in each 
instance and y is arbitrary. This means that y is chosen from the set of all 
integers S which is such that if y0 £ 5, $i + yg £ S for i = 0, 1, 2, . .., 
n - 1 and (n - i)a + yg £ S for i = 1, 2, . .., n and the shift conditions are 
satisfied for all values j E S for the given values a and $. 

Note that if {wj}™-=0 is a well-behaved sequence to k and if k\ < k is any-
natural number, then {Wj}^=0 is also well behaved to k\. When the phrase 
"{idj}°?= Q is a well-behaved sequence" is used, it will be supposed "to arbitrary 
k a natural number." Unless otherwise stated, the shift that will be used for 
well-behaved sequences is (2*04 (m) y r$i(m) , y(m)) where r and y(m) are whole 
numbers. 

One of the examples of a well-behaved sequence for any k a natural number 
that has been given is the sequence {Ej } =̂ 0 of Euler numbers with the shift 
(pa 1(777), r$i(m) , y (???)) for r a fixed whole number and y an arbitrary whole num-
ber with 77? = LCM[TT7I, 7772» •••> mt\ > 1 with mi9 m^9 . . . 9 Mt natural numbers. 

It is clear by the Product Theorem that the "product" 

({WJ}J-O^J>J-O = Wyj}J-o) 
of well-behaved sequences all with respect to 7??, a(777) and 6(77?) is also a well-
behaved sequence. Indeed, it is this that motivated Definition 5. 

Definition 6: Let k9 m = LCM[T7?]_, 7772, ...5 mt] > 1 and 77?̂ , 77?2 * . . . 9 mt be natural 
numbers. Let 

R[ ) = {(^n> ^l5 •••» ^pl^o5 x\> •••» xk a r e a H 777-integers} 

and suppose 

(XQ, X^9 . . . , # f c )> ( T / Q 5 ^ l 5 • • • » 2/fc' G \7??/" 

Then 

(a) (xQ9 xY, ..., #fc) = (yQ9 2/x, ..., z/k) provided 2^ = z/̂  (mod mk) 
for 0 < i < k; 

(b) (a?0, xl$ ,.., #*) + (z/0, yl9 ..., z/fc) = GrQ + yQ9 xx + yl9 ..., xk + z/k); 

(c; V^Q) ĵ_5 ..., x^J • (T/QJ z/1» ..., yk) — \X ^y Q 9 *^\}j\9 •••» ^k^k^* 

(d) If a is any 77?-integer, a(xQ, #,, ..., 2^) = (axQ, ax-,, ..., axk) ; 

(e) Let n be any integer. If #", x^, . .., #£ all exist (mod 777*0, then 
( *Y* T* T* I ( /ytrL rytYl /y»?2\ 

It is clear that #(n) is a commutative ring with identity e = (1, 1, ..., 
1) . R\) is called the ring of (k + I)-tuples of m-integers (mod 777fe) and, fur-
thermore, by the Product Theorem, there exist subrings #( ) of R( \ such that 
if (xQ, xx, ..., xk) e Blfy then 

(37) Y, (-l^(k')xj E °  (mod ^ ) . 
j-o X J / 

Any such subring of #(m) is called a binomial ring. 
Let {Uj}?0 be a well-behaved sequence. It is clear that 

generates a binomial ring. These observations establish 

Theorem 13: Let {̂ ij }J»0 f o r * - ^ - ̂  a 1 1 b e well-behaved sequences to fc with 
respect to 77? = IiCM^, 77?2J ...» 7771] > 1 and fixed a(777) and 3(777). Let g(x\9 xz> 
..., xt) be a polynomial with m-integer coefficients. Let y-- = #-£/(&,,/)• Then 
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(#(#10> #20* •••» #to)> #(#11* #21' •••» ytl)> •••» #Q/lfc» #2/<* ..., #^)) is an 
element of a binomial ring. 

Definition 7: An element (#0, a^, . .., #k) e i? (*) is said to be principal pro-
vided (XQX-^ . .. or̂  , 7??) = 1. 

It is clear that If x = (xQ9 xl9 . . . , a;k) is a principal element of #(£)» 
then {x, x2, x3, . ..} is a cyclic group under multiplication. Furthermore, it 
is the principal elements that have multiplicative inverses. 

Suppose that {^j}J=o i-s a well-behaved sequence to k with respect to m = 
LCM[w1? 7??2S •.., mt] > 1, a(m) 9 and $(m). Suppose also that {a^}, {&£>, and 
{iq} are all sequences of whole numbers. Then { WJ' + ̂ . } ? Q is a well-behaved 
sequence to k. Let o^ , 3^s c^s d, and ^ be any m-integers. It follows that 

08). j ( (£n(<v;: \ + ^)^ + ^ ) " [ " _ o 
is well behaved to k with respect to m9 a, and 3. Here, the sum and the prod-
uct are finite and f E 0 (mod mk). Other variations besides (38) can, of 
course3 be given. 

As has been seen, {EJ}-Q is well behaved to any k a natural number for 
m > 1 an odd number with shift (rai(m)9 r$i(m)9 y(m)) for v and y(ffz) whole num-
bers . 

As an example of a binomial ring constructed from the Euler numbers, let 
m = 5 = LCM[5] and k = 3. Here, using the natural shift 

/(3, J) = (3 - j)r(<|>(5) + H5)]9 + r[fe(5)]^j + y(5) 

= (3 - j)5 + j + 1 = 16 - 4j, 

where p = ̂  = y = 1. Here, y was chosen to be 1 since, for even y, the corre-
sponding Euler number is 0, and this is trivial. Other choices can, of course, 
be made for r, g9 and y(m). For the above choices, 

Eie = 1 9 3 9 1 5 1 2 1 4 5 = 20 (mod 5 3 ) , 

El2 = 2 7 0 2 7 6 5 = 15 (mod 5 3 ) , 

#8 = 1 3 8 5 = 10 (mod 5 3 ) , 

£\ = 5 E 5 (mod 5 3 ) . 
Thus, j2\ 

(20, 15, 10, 5) is a member of a binomial ring Bl J. 

Since (#, a:, #, #) is also a member, it follows that 

(20 + x)n - 3(15 + x)n + 3(10 + x)n - (5 + x)n = 0 (mod 125) 

for n any whole number and x any integer. 
To construct another element of such a s(3) , let r = # = 1 and y = 3. Then 

/(3, j) = 18 - 4j, so that 

# 1 8 = - 2 4 0 4 8 7 9 6 7 5 4 4 1 E 5 9 (mod 125), 

Elh = -1 9 9 3 6 0 9 8 1 = 19 (mod 125), 

ff10 = -5 0 5 2 1 = 104 (mod 125), 

tf6 = -6 1 = 64 (mod 125). 
Thus, n 

(59, 19, 104, 64) is a member of a S(^j. 

Combining this with the previous element, for x and y any integers, m and n any 
whole numbers, 
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(20 + ̂ )m(59 + y)n - 3(15 + ̂ )w(19 + y)n + 3(10 + x)m(lOh + y)n 

- (5 + x)m{6h + y)n = 0 (mod 125). 

This can actually be made a little stronger. If 

(20 + x, 15 + x, 10 + x, 5 + x) and (59 + y9 19 + z/, 104 + y, 64 + z/) 

are both principal, then m and ft can be any integers. 

8. Some Additional Results with (mod{LCM[ml5 m2, ..., mt]}n) 

The examples in this paper have been concerned with congruences (mod mn) . 
The case, with m - p = LCM[p] and p a prime number, is, of course, well known 
in connection with Kummerfs congruences. Some additional examples will be 
given here. 

The natural shift (a(w), 3(7??), y(w)) with m = LCM[T??19 TT?2» * • . , rnt] will be 
used. Here 

(39) 01(777) = z»a 1(777), 3(777) = P 3 1(777), 

with 

(40) 04(777) = rl[(f)(mi) + h(mt)]91 + sx = 2*2[<|>0"2) + M w 2 ) ] ^ 2 + s2 

= ... = Pt[(j>(^) + Kmt)]9* + st 
and 

(41) 3i(w) = rilTzfai)]*1 + S l = r2[h(m2)]92 + s2 = • • • = rt[h{m^]9t + st, 

for some integers P i , P 2 , •••> pt » s l ' s2» •••> st» a n d some natural numbers 
^1» £72 > • * ' > 9f ^s w a s remarked earlier, special care is needed for any of 
the p ! s or s?s to be negative. It will be supposed that a 1(777) , $1(77?), v * 0 
and a 1(777) * $1(77?) to keep the results from being trivial. 

First, an example using Theorem 3 will be given. Let m = 15 = LCM[3, 5] 
and n = 3. In this case, (f)(3) = 2 and (f)(5) = 4 so that v^ , p^ ; si » s 2 » ^ l 5 ̂ 2 
are required such that 

(42) rl[2 + I]91 + sx = P 2 [ 4 + l]^2 + s2 and rx • I91 + s± = r2 * I92 + s£. 

Clearly, a choice is Pi = 2, P2 = 1; Si = 0, S2 = 1; g \ = g2
 = 1 anc^ ^ = 1 so 

that a(777) = 6 and 3(777) = 2 so that /(3, j) = (3 - j) • 6 + 2j + y = 18 - 4j + y 
so that Theorem 3 gives 

(̂ 3) ^j (~1)M '/^IS-^j+y E 0 (mod 153) where y is a whole number. 

Evidently, other choices for Y\> V2, s ^ s2$ g\> gz i n (41) c a n be made. 
On the other hand, if 777 = 15 = LCM[15], then 

/(3, J) = (3 - j)r[*(15) + h(l5)]9 + r[h(l5)]9 + y. 

Let p = £7 = 1 so that 

/(3, j) = (3 - j)(9) + j + y = 27 - 8j + y 

(44) X (-D^-Ky-Sj + Y E 0 (mod 153). 

and 

_ i-iri 
j-o 

An example using Theorem. 7 is given by 777 = 35 - LCM[5, 7 ] . Here, (f)(5) = 4, 
ft(5) = 1, (f)(7) = 6, and 7z(7) = 1 so that P i 3 r2, Si, and s2 are needed such that 

5PI + Si = 7P2 + s25 
(45) 

Pl + Sl = p2 + s2. (Here, ̂ x = g2 = 1.) 
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A choice for these numbers is P X = 3, r2 = 2, s1 = 0, and s2 = 1. This gives 
ax (7??) = 15 and $1(777) = 3. Choose r = 1. From Theorem 7, it is required that 
(35, 2 3 + ^ + 1 - 1) = 1 and (1 - j)15 + 3j + y + 1 is even. In this case, n = 1. 
A choice for y = y(m) satisfying this is y = 6. Thus, Theorem 7 says that 

?22 
22 -"Tl/K-o are b ° t h 3 5 ~ i n t e § e r s and .^(° ° 1)J'C-)2?-"l2j' E °  (m0d 35)' 

Notice that another congruence (mod 35) can easily be given by letting m = 35 = 
LCM[35]„ In this case, (j)(35) = 24 and M35) = 1. Thus, a choice of a(35) = 25 
and 3(35) = 1, To satisfy the hypothesis of Theorem 7, it is required that 
(35, 2 1 + y + 1 - 1) = 1 and (1 - j) • 25 + J + y + 1 = 26 - 24j + be even. y = 0 
works. Thus, according to Theorem 7, 

t26 - 24^-0 ^ 35™inteSers and .g^-^Hj^e - 24j = °  ( m ° d 35)°  
More generally, let a and 2? be natural numbers such that m = LCM[a, b] > 1 

is odd» Then it is required to find P 1 S P2* s l ' s2» f° r #1 = 92 = 1 such that 

ri[<Ka) + Ma)] + si = 2>2[<K£) + Mi)] + sl9 
(46) 

ri?z(a) + Si = r2h(b) + s2-

A choise for r\ and Sj satisfying this is 

LCM[([)(a), <(>(&)] 
P = — and Si = 0. 
1 +(a) X 

For this choice, 
. . v LCM[<()(a), +(i)][<|)(a) + Ma)] 

a(m) = — — 

and 
_ , r LCM[(()(a), *(&)]fe(a) 

$(m) = — , 
*(a) 

so that, by Theorem 7, if 
ir LCM[0(a), Mb)] Ha) , 

fLCM[a, i], 2 *(a) - l)= 1 for i = 1, 2, 3, . 

then B nr LCM[<Ka), <K&)U(a) ^ ^ 
V i v W {*LCM[»(qM(b)]J+ « g ) + ? + !} 

( ^ /T0 W / r , , ,7 N 1. nv LCM[(f>(a), +(&)]^(a) 
J 0 p LCM[(()(a), *(6)]j + ' / + y + 1 

<|)(a) 
E 0 (mod{LCM[a, i]}n). [Here, y = j(m)]. 

Notice that since there exist a and b such that 

LCM[<|>(a), *(*)] * ^(LCM[a, i]) 

(for example, a = 15 and 2? = 35) it follows that (48) is essentially different 
from what would be obtained simply by letting m = LCK[m] for m = LCM[a, b]. 

The reader might enjoy examining the congruences obtained from 

m = 105 - LCM[105] = LCM[3, 5, 7] = LCM[15, 7] = LCM[21, 5] 

= LCM[3, 35] - LCM[15, 35] - LCM[21, 35] = LCM[15, 21] 

for these various LCM-partitions of 105. 

n9 
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Continued from page 334 

Our home during the Conference was a University dormitory. John Burnet Hall, formerly a hotel and still 
providing the comfort of such. Colleges and Universities have the reputation of offering dull, institutionalized fare. 
Our food, taken at the dorm's cafeteria, constituted an enjoyable counterexample. 

St Andrews is an ancient institution. And during its nearly six centuries of existence, it has maintained 
vigorous scholarly impact across the whole academic spectrum. St. Andrews has been called "a gem of a Univer-
sity"—uniquely Scottish by history and beautiful location, yet unusually cosmopolitan. 

The Conference's social events rounded off, and enhanced, our academic sessions. The traditional mid-
conference's afternoon excursion took us to Falkland, a Renaissance Palace, which grew out of the medieval 
Falkland Castle. At once did we get lured into the quaintness of an historically rich palace and became enchanted 
by the charming multi-coloredness of the garden. 

To convey the congenial and happy atmosphere at our Conference—dinner adequately would require a 
vocabulary far richer than mine. Interspersed with inspirational short talks and remarks, animated by delicious 
banquet fare and, most of all, by having our whole group gathered together, it was simply delightful. 

And, finally, the Conference itself. 
Erudite and always carefully prepared papers ranged over the heights and depths of "purity" and "applic-

ability," once more illustrating the startling way in which these two facets of mathematics are duals of each other. 
And while we speak with many different accents, we understand each other on a much more significant level. 
Almost immediately, friendships blossomed or ripened, as the love of our discipline and the enthusiasm for it were 
written over all the faces of the "Fibonaccians" as some of us like to refer to ourselves. That one week in Scotland, 
kindled by the serenity of the Scottish landscape and enhanced by the spirit of our Scottish hosts and co-mathema-
ticians, gave us experiences which were both mentally enriching and personally heartwarming. 

Finally, it was "farewell." But it is with much happiness that we can say: "Auf Wiedersehen in two years at 
Pullman, Washington." 
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