
ON THE DISTRIBUTION OF PYTHAGOREAN TRIPLES 

Edward K. Hinson 
University of New Hampshire, Durham, NH 03824 

(Submitted January 1991) 

1. Introduction 

A triple (a, b, c) of natural numbers is a pythagorean triple if a2 + b2= c2, 
that is, if there exists a right triangle whose sides are lengths a, b, and c. 
If gcd(a, b) = 1, then the triple is primitive. The family of such triples was 
among the earliest mathematical objects to be completely characterized. 

Theorem 1: Every primitive pythagorean triple (x9y9 z) with x even and x , y, 
z > 0 is given by 

x = 1st, y = s2 - t2, a = s2 + t2 

for positive integers s, t such that gcd(s, t) = 1 and s t t (mod 2). Conver-
sely, each such pair s, t gives a primitive pythagorean triple by the formula. 

In this paper we pursue alternate descriptions of the family of pythagorean 
triples. We approach this by way of functions which map the set of triples 
into subsets of R in which their distribution can be represented topologically 
and algebraically. 

2. The Counting Function v 

We wish to characterize pythagorean triples in terms of two parameters: the 
positive differences between the lengths of the hypotenuse and the respective 
legs. In order that this be unambiguous, we must verify that any pair (a, b) 
in N x N, a < bs corresponds to at most one triple. But this amounts to 
showing that the quadratic equation 

(1) x2 + (x + a ) 2 = (x + b)2 

has at most one natural number solution—an easy exercise using the quadratic 
formula. Thus, we have a function 

v0 : (N u {0}) x N ^ {0, 1}, 

where VQ(CL, b) = 1 if and only if there exists a natural number solution for 
the equation (1). 

One can formulate this more concisely. Let S = Q n [0, 1), the set of all 
rational points in the unit interval except the right endpoint 1. Define 

v : S •> {0, 1} 
by 

v(a/b) = v0(a, b). 
For v to be well defined, it suffices that, for all a, b, d in N, we have 

vo(a, b) = v0(aJ, bd). 

But this holds since 

(b - a) + /2b (b - a) e N 
if and only if 

d(b - a) + d/2b(b - a) = {db - da) + J2(db)(db - da) e N. 
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Note that any common divisor of x, x + a, and x + b must divide both a and 
b. Since every fraction can be represented in lowest terms, it follows that a 
one-to-one correspondence exists between the elements of v-1(l) and the primi-
tive pythagorean triples. Considering S to have the topology induced by the 
usual one on R we may use v to represent the primitive triples in S and study 
them from a topological viewpoint. 

For example, consider the infinite family of triples 

(2) {In + 1, In2 + In, In1 + In + 1), n e N. 
Under v these correspond to the rational numbers 

2n2 - 1 

Thus, in the real unit interval I = [0, 1], the accumulation point 1 of the set 
v-1(l) reflects the asymptotic equality of the longer leg and the hypotenuse in 
the family (2). 

We shall use the following basic property of v in the next section. 

Proposition 2: Let a, b be natural numbers. If a is even and b is odd, then 
v(a/b) = 0. 

Proof: It suffices to show that v2b(b - a) cannot be an integer. Under the hy-
potheses, both b and b - a are odd; thus, there is not the second factor of 2 
necessary In 2b(b - a) for it to be a square. 

3. A Density Theorem for v 

Most of the easily represented families of triples yield sequences in I 
converging to 1; e.g., 

(2n, nz - 1, n2 + 1), 
(4n2, nh - 4, nh + 4), 
(2w + 1, In1 + In, In2 + In + 1). 

But there may be many other accumulation points of v""*(l). We can use Theorem 
1 to determine the inverse images of the counting function v. 

Theorem 3: The sets v-1(0) and v_1(l) are both dense In the real unit interval 
I with respect to the usual metric. 

Proof: We shall use Proposition 2 to show the density of v"1(0)« Since v(0) = 
v(l) = 0, choose v in (0, 1) and e > 0. Choose b to be an even natural number 
satisfying l/(b2 + 1) < e/2. Now for some nonnegative integer a the Interval 
(p - e, v + e) contains both a/(b2 + 1) and (a + 1)/(b2 + 1). Exactly one of a 
and a + 1 is even (say itfs a ), and now v(a/(b2 + 1)) = 0 by Proposition 2. 
Since e is arbitrary we have r in the closure of v~1(0)» 

To show the density of v_1(l) in I it suffices to show that every neighbor-
hood in I contains some alb with v(a/b) = 1. Choose r and e from (0, 1) such 
that 0 < e < min{p, 1 - r}. We can restrict ourselves (thus slightly strength-
ening the result) to those triples whose longer leg has even length, i.e., for 
which 1st > s2 - t2 in the characterization of Theorem 1. Solving the quadra-
tic inequality resulting from the substitution y = sit gives s < (I + V2)t as a 
necessary and sufficient condition for this restriction. Thus, by Theorem 1, 
we wish to find relatively prime s and t9 exactly one of which is even* so that 

1st - (s2 - t2) 
(3) T - e < o ^ o— o7 < r3 + s « 
v J (s2 + t2) - (s2 - t2) 
Again using y = s It and the quadratic formula^ and setting i?= 1 - r - e , we 
have (3) if and only if 
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(4) /R < — ( I " l) < ̂  + 2e. 

The density of Q in R insures that relatively prime s0 and t0 exist which sat-
isfy (4). Furthermore3 i/R + 2e < 1 implies that SQ < (1 + /2")£Q. I f exactly 
one of SQ and £Q is even, we may take s = SQ, t = £Q and be done. If sg and £Q 
are both odd, choose N > 0 odd and large enough so that 

^ i (NsQ + 1 \ . 
/R < 4=1—^ - 1 < /i? + 2e. M ^0 

Let s and £ be the numerator and denominator, respectively, of the lowest terms 
representation of (NSQ + 1)/Nt$; it follows from the choice of N that s is even 
and t is odd. In this way we can construct a rational a/b with v(a/b) = 1 and 
| (a/2?) - r| < e, and the theorem is proved. 

4. A Representation in the Multiplicative Positive Rationals 

There is another formulation of the counting function which is of interest. 
Define a function 

n : Q + + {0, 1} 
by 

T}(a/b) = v(a/(a + b)) 
and note that it, too, Is well defined. There is again a one-to-one correspon-
dence between primitive triples and the elements of rT^l). Realizing n as 
v o f9 where f : Q + •> [0, 1) is given by f(x) =x/(l + x) , allows one to deduce 
from the continuity of / that n_1(0) and rT^l) are both dense in Q+. 

The natural multiplicative closure in Q + suggests the possibility of an 
induced closure in n~ *(()), T T ^ I ) , or related subsets. But direct calculations 
yield 

n(7) = n(|) = l, n(|) - n(|) - n(±) - 0, 

which taken together show the failure of closure in n~1(0) and n"1(l). One may 
observe some slight structure, however, from the following point of view. Let 

and 
j-t 

Clearly, I contains 1, and thus one has a chain I QI'Q Q + of nonempty sets. 
In fact, we can further characterize the elements of J. 

Proposition 4: Let p and q be in Z+ with gcd(p, q) = 1. Then p/q is in I if and 
only If r)(p/q) • r\(q/p) = 1 if and only If p and q are each squares and p + q is 
twice a square. 

Proof: The first equivalence is immediate. Note that 

f(p/q) = p/(p + q) and fiqlp) = q/(p + q) 
and so r](p/q) • r\(q/p) = 1 if and only If both 

/2(p + q)q and fl{p + qjp 
are integers. Suppose that p, q9 and (p + q)/2 are each squares. Then the 
above radicals are clearly integers. Conversely, if 

/2(p + q)q and /2{p~T~qYq 
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are both integers , then so i s 
/2Tp + q)q • /2(p + ^)p = 2 (p + ( 7 ) / ^ 

and thus pq is a square. Moreover, since they are relatively prime, each of p 
and q must be a square. Letting p be a square, it follows from the integrality 
of /2(p + q)p that (p + q)/2 is also a square, as required. 

One sees as a. corollary that a given p/^ from ri~"1C1) is in I if and only if 
p and q are squares. This observation is useful in proving the following 
result. 

Proposition 5: Let ps pi, q, and qi be positive integers. 

(i) If pilqi is in I", i = 1, 2, then PiPz^i^z i s i n ̂ "'» 

fizj for any positive rational p/q9 Ir contains (p/q)2; 

(Hi) if p/q is in I, then (p/q)n is in I' for all n > 1. 

Proof: If, under the hypothesis of (i) , p-iPo + ^1^2 ̂ s t w i c e a square, then 
PlP^lq^z i s i n "̂ ̂ y Proposition 4. If p^p2 + ^1^2 i s n o t t w i c e a square then 

n(P1P2/^1^2) • n(^1^72/p1p2) = 0; 

but each factor must be 0 since, otherwise, the above remark would force their 
product to be 1. A similar argument proves (ii) immediately, and (iii) follows 
from (ii) using Proposition 4. 

As in the previous section, one may wish to know the accumulation points of 
I and Ir in the nonnegative half-line R + U {0}. 

Theorem 6: The sets I and Ir are dense in R+. 

Proof: The density of Ir will follow from that of I by the inclusion J C J'. We 
know from Proposition 4 that p/q is in I if and only if p and q are squares and 
p + q is twice a square. Note that such p/q, in lowest terms, correspond to 
the primitive solutions of the diophantine equation u2- + V2- = 2W2- when p = u2-
and q = V2. One may calculate that 

(b - a)2 + (b + a)2 = 2c^-
if and only if (a, b, 0) is a pythagorean triple. Thus, it will suffice to show 
that as a and b vary among primitive pythagorean triples (a, b, c) the fractions 
ib - a) I (b + a) are dense in the interval (0, 1). We argue as in Theorem 3. 
Characterizing the primitive triples as in Theorem 1, restricting our attention 
to those triples in which 1st > s2 - t2 and setting y = s/t gives 

b - a 2y - y2 + 1 

b + a~~ 2y + y 2 - l ' 

But now, differentiating this expression with respect to the real variable y 
shows that its range on the restricted domain (v2 - 1, v2 + 1) is all of R+; as 
in Theorem 3, the restriction above on s and t holds in this interval. We com-
plete the proof by using the technique of Theorem 3 to produce s/t corre-
sponding to primitive pythagorean triples arbitrarily close to any rational in 
(0, 1). 
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