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1. Introduction

Let 1 = a; <ap < .. be an infinite strictly increasing sequence of posi-
tive integers. Let 7 be a positive integer. We write

(1.1) no=aqy t ap) t o-e- t A,

where a1y is the greatest element of the sequence <wn, qp) is the greatest ele-
ment < n - qq), and, generally, a(;) is the greatest element <7n - a() - ag) -

- a;-1) - This algorithm for additive representation of positive integers
was introduced in 1969 by Katai ([2], [3], [4]). Lemoine had earlier considered
the special cases a; = 2%, k > 2 ([5], [6]), and a; = i(Z + 1)/2 ([7]). (See
[10] for further information and note also [1].) The above algorithm is, in
turn, a special case of a more general algorithm introduced by Nathanson ([9]) in
1975.

The following basic definitions and results are taken from [8] and [10].
We denote here the set of positive integers by N.

Let 1 = a; <ap < «++ be an infinite strictly increasing sequence of posi-
tive integers with the first element equal to 1. We call it an A-sequence and
denote by A the sequence itself or sometimes the set consisting of the elements
of the sequence. We denote the number s of terms in (1.1) by A(n). If the set
{n € N|h(n) = m} is nonempty for some m € N, we say that y, exists and define
Y, to be the smallest element of this set. If y, exists for every m € N, we
say that the Y-sequence exists and we denote the sequence 1 = y; < yp, < -.- by
Y. The elements Yy, are also called minimal elements.

Theorem 1.1 (Lord): Let y, be given (k € N). Then yj,; exists if and only if
there exists a number n € N such that

Ap+1 — Ay = 1 2y,

Furthermore, if y;,; exists, then yz41 = y; + a,, where m is the smallest num-
ber in the set

{neNla,41 -a, - 12y}
Proof: [8], [10, p. 9]. O
It follows that the Y-sequence exists if and only if the set
{a,41 - an|n € N}

is not bounded.
For technical reasons, we sometimes wish to start the A-sequences and Y-

sequences with an element ay = 0 or yg = 0, respectively. The following result
is from [10, p. 14].

Theorem 1.2: Suppose that B: 0 = by < 1 = by <by < ... is an infinite sequence
of nonnegative integers. Then B is the JY-sequence for some A-sequence if and
only if it satisfies the following conditions:

(a) TFor every n € N, either
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(1) by4y - by = b, = b,_y, or
(2) byiq = 2b, + 1.

(b) The condition (2) in (a) holds for infinitely many n € N.

In section 2 of this paper we determine, given a sequence B satisfying the
conditions (a) and (b) above, all A-sequences A such that Y = B (Theorem 2.1).
In section 3 we establish how many such A-sequences there are (Theorem 3.5).
Fibonacci numbers make their appearance there (after Definition 3.1). For
other connections of Fibonacci numbers with the Lemoine-Katai algorithm we
refer to [11] and especially to [12], which also provides part of the motiva-
tion for this paper.

2. Determination of All A-Sequences Having a Given Y-Sequence

Theorem 2.1: Let the sequence B: 0 = by < 1 = by < by < ... satisfy the condi-
tions (a) and (b) of Theorem 1.2. For the A-sequence 4:1 =aqa; < ap < ---, we
have Y = B if and only if the following conditions hold:

(a) 4 N [bl’ bz] = {l, 2y aeey bz - l}.
(b) Let n > 1. 1I1f b,,y - b, =Db,, = b,_1, then AN [b,, by+] = 0.

(c) Let m > 1. If by,y; 2 2b, + 1, then A n [b,, b,y1] = {ag, ..., a;},
where ag < -+ < a;, and

(2.1) b, + 1 <a, <2b, - by_1»
(2.2) a;47 —a; <by, 1 =8, .., t =1 (if t > 8),
(2-3) ay = b7l+l - bn.

Proof: The "if" part can be proved in almost exactly the same fashion as the
corresponding part in the proof of Theorem 1.2. In fact, we only have to sup-
press "= 0" on page 16, line 7 in [10]. Notice also that the condition

ag < an - bn—l
in (2.1) means that (2.2) holds also for © = s — 1. To see this, observe that
(2.4) Ag-1 = bn - bn-l’

which follows easily using conditions (a), (b), and (c).

To prove the "only if" part we suppose now that A: 1 = a; <ap < ... is an
A-sequence such that Y = B. We must prove that conditions (a), (b), and (c)
hold. Condition (a) is trivial. Let n > 1 and suppose that

byy1 = by = by = by
From our definitions, it follows easily that
(2.5) AnB={1}.

Suppose that condition (b) is not true. Then, using (2.5) and B =7, we
would get

{y, + 1, y, +2, eous Yy + (Yy = Yn-1Dr 0 4
=1{b, +1, «c., byt N4 =0,

and so, by [10, Th. 1.13, p. 13],
b,y1 2 2b, + 1,

a contradiction.
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Suppose now that m > 1 and b,,; 2 2b, + 1. Suppose further that (a) holds
and that (b) and (c) hold for all n'e N, 1 <n' <n if n > 2. We prove that
(¢) holds for m. Since b, +1 < b,,1 - b, < b, and since, by Theorem 1.1,
Ypvl — Yn = byy1 — bn € 4, we see that

An [b,, byy1] = {ag, .., az}

with a5 < -+ <a; and b,41 - b, = ap for some h, s <h <t. We must prove that
h = t. By Theorem 1.l and the definition of %, we get

ap+1 —ap - 1 2 by,

If & < t, then we would get

aAp+y — ap - 1 < bn+l - (Z?n+1 - bn) - 1= bn -1 < bys
a contradiction. It follows that (2.3) holds.
1f we had a;4+; - a; > by for some 2, 8 = 1 < 7 £ t - 1, then we would have

a;4+1 — a; - 1 =2 b, and so, by Theorem 1.1,
bpty € by + a;p < by +ap = byi1s

a contradiction. This proves (2.2). Finally, (2.1) follows from (2.5) and the
case © = 8§ - 1 above, noticing that using our induction hypothesis we get (2.4)
as before. Theorem 2.1 is now proved. [

3. The Number of A-Sequences Having a Given Y-Sequence

Suppose that B: 0 = by < 1 = by < by < ... satisfies conditions (a) and (b)
of Theorem 1.2. Let n > 1 and suppose that b,4+; 2 2b, + 1. Let I(n) be the
number of different sequences ag; < --- < a; satisfying conditions (2.1), (2.2),
and (2.3). We are going to evaluate I(n). For that, we need the following

&)

Definition 3.1: Let j € N. Let u;’, © =1, 2, ..., be such that

7~-1 f o .
u(:j)__: 2' . for 7 1, 2, voos Js
¢ M%Ql + .o+ ugjj for 7 > 4.
In particular, we have u%” =1,%2=1,2,..., and u%n =F .1, 7 =1, 2,

(where F;,; denotes the Fibonacci number).

Lemma 3.2: Let a, b € Z, a < b, j€N. The number of all possible sets {e;,
.s ¢} (k is not fixed), where
a=cy <cy < .we <o =b,cp €L, L =1, ..., ks
and
Ci+l — C; = j, 1 = 1, ..., k - 1,
s D
is uy’, -
Proof: 1f b - a < J, then any subset of the set {a + 1,...,b - 1}, arranged as
a sequence Cp < ... < Cz_], gives rise to a permissible sequence

a=c¢) <y < ees < = b.

There are b - a — 1 members in the set {a + 1, ..., b - 1}.
If b - a > J, then ¢, must be one of the numbers a + 1, a + 2, ..., a + J,
and we use induction. [

Theorem 3.3: Let n > 1 and b,4+; = 2b, + 1.
(@) I(n) = 2bn+1 -2bn=1_ 3¢ 2p — b, | 2 b,41 - by.

h
(b) I(n) .§: ugw), if 2b, - b,-1 < b,41 - b,, where
i=g
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g = bn+1 - 3b, + bn—l and & = bn+l - 2b, - 1.
(¢c) In case (b), if (b,4+1 - by) - (b, + 1) < b,, then
I(Vl) - 2b,,+1—2bn—l _ an+1— 3bp+ by —1 .

Proof: These results follow easily from Theorem 2.1, the definition of I(n), and
the use of Lemma 3.2. [J

Corollary 3.4: Let n > 1 and b, 4; = 2b, + 1. We have I(n) = 1 if and only if
(a) bﬂ‘f'l = an + l, or
(b) byi1 = 2by + 2 and b, = b, + 1.

Proof: The "if'" part is clear. To prove the "only if" part, we suppose that
neither (a) nor (b) holds. Then we must have b,,; = 2b, + 2.

(1) If b,y = 2b, + 2, we must have b, - b, 2 2. It follows that
2b, = by-1 2b, +2 =0, - by.
According to Theorem 3.3, we have
T(n) = 2bne1 =26 -1 p2-1 _ 5
(2) Let by4; 2 2b, + 3. 1f 2b, - b,-1 =2 by4+1 - b,, then, according to
Theorem 3.3, we have
I(n) = obn+1 = 2bn =1 5 531 _ 4

On the other hand, if 2b, - b,-1 < b,4+1 - b,, then, again by Theorem 3.3,

(Bn) _ ,,(by) ®
I(n) =z u,m = Up - 26, -1 > Uy
In the last inequality, we use the fact that b, > 1, which follows from 7n > 1,

and the proof is complete. [J

"i = u(zb") > 1.

Theorem 3.5: Let B: 0 = by <1 =5b; < by < ... be an infinite sequence of non-
negative integers satisfying the conditions (a) and (b) of Theorem 1.2. Let
I(B) denote the number of different A-sequences for which Y = B. Then I(B) is
finite if and only if there exists ng € N such that b, 41 <2by+1 for all n 2 ng.
In that case

(3.1) I(B) = I(n) [we define I(1l) = 1].

l<ns<ng
bn+122bn+l
Proof: From Theorem 2.1 it is clear that I(B) is finite if and only if for some
point on we always have I(n) = 1 for n satisfying b,4+; 2 2bn + 1. From Corol-
lary 3.4 we know exactly when I(n) = 1. It remains to observe that condition
(b) of Corollary 3.4 can hold for at most one n. [J

Examples 3.6:

(a) ([10, p. 16], [12, p. 296]) Let B be defined by by = 0, by41= 2bp+ 1,
n=0, 1, ... . Then b, = 2" - 1 for every n €N and by (3.1) we get I(B) = 1.
The only A-sequence A satisfying ¥ = B is given by a, = 27l n=1, 2, .

(b) Let us modify the example given above by taking B:0, 1, 3, 10, 17, 24,
31, 63, 127, ..., 2" -1, ... . Using (3.1) and Theorem 3.3 [we can use (b) or
(c)], we get I(B) = I(2) = 6. The six A-sequences for which Y = B are given by

1, 2, 4, 5, 6, 7, 32, 64, ..., 2", R
1, 2, 4, 6, 75 32, 64y oy 2™, ..,
1, 2, 4, 5, 7, 32, 64, ..., 2™, ...,
1, 2, 4, 7, 32, 64, ..., 2", ...,
1, 2, 5, 6, 7, 32, 64, ..., 27, R
1, 2, 5, 7, 32, 64, ..., 27,
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(c) We modify the examples given above and take B:0, 1, 3, 17, 31, 63,
127, ... . We again obtain I(B) = I(2). This time we have to use part (b) of
Theorem 3.3 to calculate 7(2). The result is

I(B) = 1(2) = u + ul}) = 149 + 274 = 423.
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