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1. Introduction 

Let 1 = a\ < a,2_ < • • • be an infinite strictly increasing sequence of posi-
tive integers. Let n be a positive integer. We write 

(1.1) n = a(1) + a(2) + ... + a(s), 

where a^ is the greatest element of the sequence < n, a^) is the greatest ele-
ment < n - aQ), and, generally, a^i) is the greatest element <n- aQ) - a^) ~ 
• •• - #(£_i). This algorithm for additive representation of positive integers 
was introduced in 1969 by Katai([2], [3], [4]). Lemoine had earlier considered 
the special cases a^ = i k , k > 2 ([5], [6]), and ai = i(i + l)/2 ([7]). (See 
[10] for further information and note also [1].) The above algorithm is, in 
turn, a special case of a more general algorithm introduced by Nathanson ([9]) in 
1975. 

The following basic definitions and results are taken from [8] and [10]. 
We denote here the set of positive integers by N. 

Let 1 = a| < a2 < • • • be an infinite strictly increasing sequence of posi-
tive integers with the first element equal to 1. We call it an A-sequence and 
denote by A the sequence itself or sometimes the set consisting of the elements 
of the sequence. We denote the number s of terms in (1.1) by h(n). If the set 
{n e N|/z(n) = m] is nonempty for some m e N, we say that ym exists and define 
ym to be the smallest element of this set. If ym exists for every m £ N, we 
say that the 1-sequence exists and we denote the sequence 1 - y\ < yz < '"' by 
Y. The elements ym are also called minimal elements. 

Theorem 1.1 (Lord) : Let yk be given (k e N) . Then y^ + i exists if and only if 
there exists a number n € N such that 

Furthermore, if y^+i exists, then y^+i = yk + am9 where m is the smallest num-
ber in the set 

{n e N\an+l - an - 1 > yk). 

Proof: [8], [10, p. 9]. • 

It follows that the 7-sequence exists if and only if the set 

{an + i - an \n e N} 
is not bounded. 

For technical reasons, we sometimes wish to start the ^-sequences and Y-
sequences with an element a0 = 0 or z/0 = 0, respectively. The following result 
is from [10, p. 14]. 

Theorem 1.2: Suppose that B : 0 = b0 < 1 = b\ < bz < ... is an infinite sequence 
of nonnegative integers. Then B is the Y-sequence for some ,4-sequence if and 
only if it satisfies the following conditions: 

(a) For every n € N, either 
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(1) bn + l - bn = bn - Z?„_i, or 
(2) bn + l > 2bn + 1. 

(b) The condition (2) in (a) holds for infinitely many n e N. 

In section 2 of this paper we determine, given a sequence B satisfying the 
conditions (a) and (b) above, all ^-sequences A such that Y = B (Theorem 2.1). 
In section 3 we establish how many such ^-sequences there are (Theorem 3.5). 
Fibonacci numbers make their appearance there (after Definition 3.1). For 
other connections of Fibonacci numbers with the Lemoine-Katai algorithm we 
refer to [11] and especially to [12], which also provides part of the motiva-
tion for this paper. 

2. Determination of All A-Sequences Having a Given Y-Sequence 

Theorem 2.1: Let the sequence B : 0 = b0 < 1 = b\ < b2 < - • • satisfy the condi-
tions (a) and (b) of Theorem 1.2. For the /1-sequence ^4:1 = a\ < a2 < • • • , we 
have Y = B if and only if the following conditions hold: 

(a) A n [bl9 b2] = {1, 2, ..., bz - 1}. 

(b) Let ft > 1. If bn+i - bn = bn - bn-i, then A n [bn , bn+i] = 0. 

(c) Let n > 1. If bn+l > 2bn + 1, then A n [bn, bn+i] = {as , ..., a t } , 
where a s < ••• < a t , and 

(2.1) bn + 1 < a s < 2&n - £„_i, 

(2.2) a-£ + 1 - a^ < bni i = s, ..., t - 1 (if £ > s), 

(2.3) at = bn+l - bn. 

Proof: The "if" part can be proved in almost exactly the same fashion as the 
corresponding part in the proof of Theorem 1.2. In fact, we only have to sup-
press "= 0" on page 16, line 7 in [10]. Notice also that the condition 

as < 2bn - bn.l 
in (2.1) means that (2.2) holds also for i = s - 1. To see this, observe that 

(2.4) as_! = bn - b n . l , 

which follows easily using conditions (a), (b), and (c). 
To prove the "only if" part we suppose now that , 4 : 1 = ai < a2 < -•• Is a n 

^-sequence such that Y = B. We must prove that conditions (a), (b) , and (c) 
hold. Condition (a) is trivial. Let ft > 1 and suppose that 

From our definitions, it follows easily that 

(2.5) A n B = {1}. 

Suppose that condition (b) is not true. Then, using (2.5) and B = J, we 
would get 

^n + !> yn + 2> •••> yn + Q/n ~ Mn -1) > n A 

= {bn + 1, ..., bn + l] n A * 0, 

and so, by [10, Th. 1.13, p. 13], 

bn+l > 2bn + 1, 

a contradiction. 
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Suppose now that n > 1 and bn + i ^ 2bn + 1. Suppose further that (a) holds 
and that (b) and (c) hold for all nr€ N , 1 < nf < n if n > 2. We prove that 
(c) holds for n. Since bn + 1 < bn + i - bn < bn + i and since, by Theorem 1.1, 
2/n + l " y-n = bn + l ~ bn ^ A, we see that 

A n [bn, bn+i] = {as, ..., at} 

with as < • • • < at and fen + i - bn = a^ for some /z, s < h < t . We must prove that 
h = t . By Theorem 1.1 and the definition of /z, we get 

ct-h + l ~ a/z ~ 1 - ^n-
Ifh<t, then we would get 

tf/z + 1 - a^ - 1 < &n + 1 - (i„ + 1 - 2>„) - 1 = &„ - 1 < 2v* 

a contradiction. It follows that (2.3) holds. 
If we had a^+i - a^ > bn for some i, s - l < i < t - l , then we would have 

a^+i - at - 1 > bn and so, by Theorem 1.1, 

bn+i ^ bn + ai < bn + at = fe„+i, 

a contradiction. This proves (2.2). Finally, (2.1) follows from (2.5) and the 
case i = s - 1 above, noticing that using our induction hypothesis we get (2.4) 
as before. Theorem 2.1 is now proved. Q 

3. The Number of A-Sequences Having a Given Y-Sequence 

Suppose that B : 0 = b$ < 1 = h\ < b2 < ••• satisfies conditions (a) and (b) 
of Theorem 1.2. Let n > 1 and suppose that bn+i > 2bn + 1. Let I(ri) be the 
number of different sequences as < ••• < at satisfying conditions (2.1), (2.2), 
and (2.3). We are going to evaluate I{n). For that, we need the following 

Definition 3.1: Let j'eN. Let u(/}, i = 1, 2, . .., be such that 

U) (2i~l for i = 1, 2, ..., j, 

Ui = W - i + ••• + wf-j for l > <?'• 
In particular, we have uSf* = 1, i = 1,2, ..., and zA2) = i^+i, £ = 1, 2, ... 

(where F^+i denotes the Fibonacci number). 
Lemma 3.2: Let a, fe e Z, a < 2?, j e N. The number of all possible sets {^2, 
..., Oy} (k is not fixed), where 

a = ci < o2 < ••• < ̂  = &, <?£ £ Z, £ = 1, ..., k, 
and 

<% + 1 - ̂  < j , £ = l, ..., k - 1, 
is u(J'} 

Proof: If b - a < j , then any subset of the set {a +!,...,£> - 1 } , arranged as 
a sequence o2

 < •*" < cfc-l* gives rise to a permissible sequence 

a = oi < o2 < • • • < <?£ = £>. 
There a r e 2? - a - 1 members i n t h e s e t { a + 1 , . . . , & - ! } . 

I f b - a > j , t h e n tf2
 m u s t be one of t h e numbers a + 1 , a + 2 , . . . , a + J , 

and we u s e i n d u c t i o n . • 

Theorem 3.3: Le t n > 1 and bn + l > 2bn + 1 . 
(a) J ( « ) = 2 ^ + i - 2 * „ - l , i f 2 2 ? n _ Z ? n _ 1 > bn + l _ ^ . 

(b) I{n) = J] w ^ , if 2bn - &n-1 < bn + 1 - fc„, where 
t = ̂  
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g = bn + 1 - 3bn + bn.l and h = bn + l - 2bn - 1. 

(c) In case (b), if (bn + l - bn) - (bn + 1 ) < bn, then 

Proof: These results follow easily from Theorem 2.1, the definition of I(n), and 
the use of Lemma 3.2. Q 

1 if and only if Corollary 3.4: Let n > 1 and bn + 1 > 2bn + 1. We have J(n) 

(a) bn+l = 2&n + 1, or 

f W ^n + l = 2Z?n + 2 and 2?n - £„_! + 1. 

Proof: The "if" part is clear. To prove the "only if" part, we suppose that 
neither (a) nor (b) holds. Then we must have bn+i > 2bn + 2. 

(1) If bn+i - 2bn + 2, we must have 

2bn - bn.l > bn + 2 - bn+i - bn. 

According to Theorem 3.3S we have 

I(n) = 2bn+l ' 2bn ~l = 2 2 " 1 = 2. 

(2) Let £ n + 1 > 2bn + 3. If 2bn - &„_! > £n+i 
Theorem 3.3, we have 

>2>n+l ' 2bn -1 

&n_ 1 > 2. It follows that. 

then, according to 

I(n) = 2L 

On the other hand, if 2bYi 

I(n) > u(bn) = 

> 23™1 = 4. 

then, again by Theorem 3.3, 

Xbn) UKn
+\ ~2bn-l ~ U 3 - l 

(bn) = nj{bn) 

In the last inequality, we use the fact that bn > 1 
and the proof is complete. • 

> 1. 

which follows from n > 1, 

Theorem 3.5: Let B : 0 1 = bi < fci be an infinite sequence of non-

(3.1) 1(B) I(n) [we define J(l) = 1] 

negative integers satisfying the conditions (a) and (b) of Theorem 1.2. Let 
1(B) denote the number of different ^-sequences for which I = B. Then !"(#) is 
finite if and only if there exists n$ £ N such that bn + i <2bn+ 1 for all n > UQ. 
In that case 

n 
1 < n < n0 

bn + l > 2bn+ 1 
Proof: From Theorem 2.1 it is clear that 1(B) is finite if and only if for some 
point on we always have I(n) = 1 for n satisfying bn+i > 2bn + 1. From Corol-
lary 3.4 we know exactly when I(n) = 1. It remains to observe that condition 
(b) of Corollary 3.4 can hold for at most one n. D 
Examples 3.6: 

(a) ([10, p. 16], [12, p. 296]) Let B be defined by b0 = 0, & n + 1 = 2bn + 1, 
n = 0, 1, ... . Then bn = 2n - 1 for every n G N and by (3.1) we get 1(B) = 1. 
The only ^-sequence A satisfying I = 5 is given by an = 2n" 1, 2, 

fb) Let us modify the example given above by taking B % 0, 1, 3, 10, 17, 24, 
31, 63, 127, ..., 2n - 1, ... 
(c)], we get 1(B) = 1(2) = 6. 

Using (3.1) and Theorem 3.3 [we can use (b) or 
The six ̂ -sequences for which Y = B are given by 

1, 2 , 4 , 5 , 6, 7 , 32 , 64 , 
1, 2 , 4 , 6, 7 , 32 , 64 , 
1, 2 , 4 , 
1, 2 , 4 , 
1, 2 , 
1, 2 , 

5 , 7 , 3 2 , 64 , 
7 , 3 2 , 64 , 

5 , 6, 7 , 32 , 64 , 
5, 7, 32 , 64 , 

2 \ 
2 n , 
2 \ 
2 \ 
2 n , 
2 n , 
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(c) We modify t h e examples g i v e n above and t a k e B: 0 , 1 , 3 , 17 , 3 1 , 6 3 , 
127, . . . . We a g a i n o b t a i n 1(B) = 1(2). Th i s t ime we have t o u se p a r t (b) of 
Theorem 3 . 3 t o c a l c u l a t e 1(2). The r e s u l t i s 

1(B) = 1(2) = z/9
3) + u{^l = 149 + 274 = 4 2 3 . 

Acknowledgments 

This research was done while I spent the Fall term 1988 at the University 
of Bergen, Norway. I wish to express my sincere gratitude to Ernst S. Selmer 
for his interest and for carefully reading the manuscript. I thank NAVF for 
financial support. 

References 

1. A. S. Fraenkel. "Systems of Numeration." Amer. Math. Monthly 92 (1985):105-
114. 

2. I. Katai. "Some Algorithms for the Representation of Natural Numbers." 
Acta Sci. Math. (Szeged) 30 (1969):99-105. 

3. I. Katai. "On an Algorithm for Additive Representation of Integers by 
Prime Numbers." Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 12 (1969):23-
27. 

4. I. Katai. "On Additive Representation of Integers." Ann. Univ. Sci. Buda-
pest, Eotvos Sect. Math. 13 (1970):77-81. 

5. E. Lemoine. "Decomposition dfun nombre entier N en ses puissances n l e m e s 

maxima." C. R. Paris XCV (1882) : 719-22. 
6. E. Lemonie. "Sur la decomposition dfun nombre en ses carres maxima." As-

soc. Franc. Tunis 25 (1896):73-77. 
7. E. Lemoine. "Note sur deus nouveles decompositions des nombres entiers." 

Assoc. Franc. Paris 29 (1900):72-7'4. 
8. G. Lord. "Minimal Elements in an Integer Representing Algorithm." Amer. 

Math. Monthly 83 (1976):193-95. 
9. M. B. Nathanson. "An Algorithm for Partitions." Proc. Amer. Math. Soc. 52 

(1975):121-24. 
10. J. Pihko. "An Algorithm for Additive Representation of Positive Integers." 

Ann. Acad. Sci. Fenn. Ser. A. I Math. Dissertationes No. 46 (1983):1-54. 
11. J. Pihko. "On Fibonacci and Lucas Representations and a Theorem of Lekker-

kerker." Fibonacci Quarterly 26. 3 (1988):256-61. 
12. J. Pihko. "Fibonacci Numbers and an Algorithm of Lemoine and Katai." In 

Applications of Fibonacci Numbers. Ed. G. E. Bergum et al. Kluwer: Aca-
demic Publishers, 1990, pp. 287-97. 

AMS Classification numbers: 11B37, 11A67 

348 [Nov, 


