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As it is well known, the equation
(1) x2 + yt =z

has no solutions in the set of positive integers (one can find this equation in
a number of sources including Dickson's History of the Theory of Numbers [2]).
The equation x2 + y” = z" serves as a classic result in the history of diophan-
tine analysis, and one of the first known examples where Fermat's method of
infinite descent is employed.

Therefore, if m = 0 (mod 4) and 7n is even, the equation x2 + ym = 22" has
no solution in positive integers x, y, and 2.

Now consider the diophantine equation z2 + azym = 22" with m even. We will
show that if g is a positive odd integer and if it has a prime divisor p = *3
(mod 8), then the above equation has no solution with (x, ay) = 1 and y odd,
provided that # = 0 (mod 2). This author has shown in [3] that the equation
xt + pzy“ = 52, p a prime with p = 5 (mod 8), has no solution in the set of
positive integers. It is known, however, that for certain primes of the form
p =1, 3, or 7 (mod 8), the latter equation does have a solution over the set
of positive integers (for fruther details, refer to [3]).

To start, we have

Theorem 1: Let a be a positive odd integer with a prime factor p of the form
p = *3 (mod 8). Also, let m and 7 be positive integers with m and » both even.
Then the diophantine equation 22 + a2y™ = 32" with (x, ay) = 1 and y odd has no
solution in the set of positive integers.

Proof: Assume (x, y, 3) to be a solution to the equation
(2) x2 + g?ym = z2»
with (x, ay) = 1.
Since m is even, m = 2k, the equation
(3) 2 + a?y?k = z2n,

describes a Pythagorean triangle with side lengths x, ayk, and 2". Accordingly,

there must exist positive integers ¢ and % of different parity, i.e., ¢ + & =1
(mod 2), with (¢, &) =1 (£ and & relatively prime), such that

(4) x = 2th, ayk = t2 - 92, 2" = t2 + 22,
From the second ‘equation of (4), we obtain
(5) ayk = (t - (@& + ).

In view of the fact that the integers ¢ and % are relatively prime and of dif-
ferent parity, we conclude that ¢ - 2 and ¢ + & must be relatively prime and
both odd; thus, (5) implies

(6) t—JL=a1y7f, t+2=a2y§

with y;, y, both odd and (y;, y,) = 1 = (a;, a,) and a;a, = a.
Equations (6) yield
ayk + ayk ayk - a,yk
Y1 2Y2 2Y2 1Y

= - = < =—————-—-————1
¢ 2 o b 2
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and by substituting in the third equation of (4), we obtain
= 2,2k 2,,2k
23" aty{* + azys;*.
By the hypothesis of the Theorem, n is even, n = 28, and so we obtain
28 = ,2,,2k 2,,2k
(7) 2248 = aty{* + asys©.
According to the general solution of the diophantine equation
222 = ¥2 + Y2 with (X, ¥) =1
(refer to [2] and also to the Remark at the end of the proof for comment on
this equation), (7) implies
(8) 28 = r2 + 82, ayf =1r?+ 2rs - 82, a,ys = -r? + 2rs + 52
with (», s) = 1 (and, in fact, » and s are of different parity).
According to the hypothesis of the Theorem, a = a;a, is divisible by a prime
p = *3 (mod 8). Thus, a, or a, is divisible by p, say ay - Then the second
equation in (8) gives P2+ 2ps - 82 = 0Q (mod p); (r + 8)2 — 282 = 0; and so
(9) (r + 8)2 = 282 (mod p).
But s and r + s are relatively prime, since » and 8 are; thus, neither of them
is divisible by p [by (9)] and so congruence (9) shows that 2 is a quadratic
residue modulo p, which is impossible according to the quadratic reciprocity
law and since p = *3 (mod 8) [recall that p = *1 (mod 8) iff 2 is a quadratic

residue mod p]. The argument is identical when a, is divisible by p; the con-
gruence that yields the contradiction is

(r + 8)2 = 2r? (mod D).

Remark: Given two positive integers a and b which are relatively prime, it can
be shown through elementary means that every solution (with X, Y, and Z
relatively prime) (X, Y, Z) in Z, to the diophantine equation

(a? + b2)z2 = 2 + y2?,
must satisfy

—am? + 2bmn + an? bm? + 2amn - bn? m? + n?
X= D ,-Y= D 3Z=—'D—s

where D is the greatest common divisor of the three numerators and where the
integers m and »n are relatively prime. In the case of the equation

222 = X2 + y2

we have, of course, a = b = 1; so the parametric solution takes the form

X =-m?2+ 2mm + n2, ¥ =m2+ 2mm - n?, 7 =m2+ n?
with (X, ¥) =1, (m, n) = 1, and m, n of different parity. If we set a =b =1
in the above formulas and require (X, Y) = 1, then it is not hard to see that
D = 1 or 2 according to whether m and n are of different parity or both odd

with (m, n) = 1; but the case D = 2 reduces to D = 1 when m and »n are both odd.
To see this, we may set m =m' - n' and n = m' + n' with (m’', n') = 1 and m',
n' of different parity. By solving the above formulas for m' and n' in terms
of m and 7, substituting for a =b = 1 and D = 2 in the above formulas, we do
see indeed that the case (m, ) = 1 and m +n = 0 (mod 2) reduces to that of
(my ) =1 and m+n =1 (mod 2) (and so D = 1).

These elementary derivations of parametric solutions make essential use of
the fact that the equation (a? + b2)Z2 = X2 + Y2 is homogeneous. For further
reading, you may refer to [1].
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Corollary 1: If a satisfies the hypothesis of Theorem 1, there is no primitive
Pythagoran triangle (primitive means that any two sides are relatively prime)

whose odd perpendicular side is divisible by a and whose hypotenuse is an inte-
ger square.

Proof: Suppose, to the contrary, that there is such a primitive Pythagorean
triple, say (xl, Yi» zl), so that x% + y% = z%, (xl, yl) =1, y; odd. Then we
must, accordingly, have y; = ay and 2z, = 32, where y and 2z are positive inte-
gers. Substituting into the above equation, we obtain x2 + azyz = z”; since y,
is odd, so must be y in view of y; = ay. But (1, y;) = (x;, ay) = 1, which,
together with the last equation, violate Theorem 1 for m = m = 2. Thus, a con-
tradiction.

Comment: It is not very difficult to show that, given any positive integer o,
there is an infinitude of Pythagorean triangles with a perpendicular side being
a pth integer power; or with the hypotenuse a ot integer power. A construc-
tion of such families of Pythagorean triangles can be done elementarily and

explicitly. Specifically, if a and b are odd positive integers which are
relatively prime, define the positive integers
P [ (S P
M = 2—{§£L- and N = g—j?llg a > b.

Then the triple (M2 - N2, 2MN, M? + N2) is a primitive Pythagorean triple such
that M2 - N2 is the pth power of an integer. That the triple is Pythagorean is
well known and established by a straightforward computation. To show that it
is primitive, it is enough to observe that, in view of the fact that a and D
are both odd (and so are a” and b°), M and N must have different parity (to see
this, consider a” + b° and a® - b° modulo 4). 1If p is a prime divisor of M and
N one easily shows that p must divide both a¢° and b»°, an impossibility in view
of (a, b) = 1. This establishes that (M, N) = 1. Finally, a computation shows
M2 - 12 = afbP = (ab)®.

To construct a primitive Pythagorean triangle whose even side is the pth
power of an integer, it would suffice to take M = g” and N = 2° 1« b? (or vice
versa), with (a, b) = 1, a and b positive integers and a odd. Here we assume
p 2 2 (for p =1 the problem is trivial, in which case one must assume b to be
even). By inspection, we have (M, N) = 1. And 2MN = 2q°f - 2p-1p0 = (2ab)?; the
triangle (M2 - N2, 2MN, M? + N2) is a primitive one whose even side is a pth
integer power.

Now, let us discuss the construction of a primitive Pythagorean triangle
whose hypotenuse is the ptP power of an integer. 1In the special case p= 27,
the following procedure can be applied. We form the sequence

(@gs Ygs Bg)s «ovs (Xus Yps 3n)
by first defining
= 2 2 = - 2 2
xo =My - Nys Yo = 2MgNy, 24 = My + Vg,

where M, and Ny are given positive integers, relatively prime, of different
parity, and My > Ng. Then recursively define

_ 2 2 — Fo—
M; = Mi—l - Ni—l and v, = ZMi—INi—l’ for 2 =1, ..., 7.
It can easily be shown by induction that (M;, N;) =1 and that (x;, y;, 2;) is a
Pythagorean triple, where
2 2
i = M‘i - Ni’ y,b = ZM,I:N.;, 3

2 2
X 7'=M7;+N,L'.

It is also easily shown that z; = Z%—l’ which eventually leads to 3z, = z%". The
Pythagorean triple (%,, Y,» %,) would then be a primitive one, with z, the pth
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power of an integer p = 2". More generally, if p > 2 is any integer, a primi-
tive Pythagorean triangle can be constructed such that the hypotenuse is the
pth power of a prime p = 1 (mod 4).

Specifically, if p is any prime such that p = 1 (mod 4), then p = a2 + b2,
where the relatively prime integers a and b are uniquely determined.

We have

P2 =pep = (@ + b2 (a? + b?) = (a® - D)2 + (2ab)?;

one can easily check that a? - b2 and 2ab must be relatively prime. Now, sup-
pose that pp_l = M2 + N2, p >3, for some positive integers M and N such that

M, vy = 1.
We have
p? =p° lep = (M2 + N2)(a? + D2) = (Mb - Na)? + (Ma + Nb)2

(Mb + Na)? + (Ma - Nb)2.

We claim that
(Mb - Na, Ma + Ib)

1 or (Mb + Na, Ma - Nb) = 1.

For, otherwise, there would be a prime g dividing Mb - Na and Ma + Nb and a
prime » dividing Mb + Na and Ma + Nb. But then, according to the above equa-
tion, both ¢ and r would divide pP; hence, ¢ = r =p. But this would imply
that p must divide 2Mb, 2Na, 2Ma, and 2Nb; consequently, p must divide (since p
is odd) Mb, Na, Ma, and Nb; however, this is impossible by virtue of (M, N) =
(a, b) = 1. Thus, we have shown that, for given p = 2 and prime p = 1 (mod 4),
there exist integers M, N, (M, N) = 1 such that p° = M2 + N?. Then the desired
Pythagorean triple is (M2 - N2, 2mm, pP).

Corollary 2: If in a primitive Pythagorean triangle the hypotenuse is an inte-
ger square, then each prime factor p of its odd perpendicular side must be con-
gruent to *1 modulo 8.

Proof: The result is an immediate consequence of Corollary 1. Indeed, if it
were otherwise, that is, if the odd perpendicular side y had a prime factor
p = 3 (mod 8), then by setting y = py;, we would obtain

x2 + p?ey2 = 22, with (x, py,) = 1.
But z = R2 by hypothesis, and so the last equation produces

22 + p2y? = R4,
which is contrary to Corollary 1 with a = p.
Theorem 2: Let m be a (positive) even integer, m = 2k, with k odd, k¥ = 3, and
n even. Also, let a be an odd positive integer that contains a prime divisor
p = *3 (mod 8), and assume that b is a non-k'P residue modulo ¢, while 2 is a
kth residue of g, where g is some prime divisor of a; b some positive integer
relatively prime to a. Moreover, assume that each divisor p of a/g¢, where ge

is the highest power of ¢ dividing a, is a k™ residue modulo g. Then the
diophantine equation

bem + azym = z271; (bxk)z + (ayk)z = (Zn)Z
has no solution in positive integers x, y, 8 with (bx, ay) = 1.

Proof: By Theorem 1, there is nothing to prove when y is odd. If, on the other
hand, y is even and x odd, with (bx, ay) = 1 and b2x™ + a?y™ = 22", we see that
bxk, ayk, and z" form a primitive Pythagorean triple, where k = m/2. 1In that
case, of course, bxr is odd and ay is even, and so we must have
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(10) baxk

with (M4, ) 1 and M, N being positive integers of different parity.

Let g be the prime divisor of a, as stated in the hypothesis. The second
equation of (10) shows that ¢ must divide M or N. Certainly the above coprime-
ness conditions show that g does not divide bx. On the other hand, by virtue

M2 - N2, ayk = 2MN, 2" = M2 + N2

of the fact that k is odd, we have (-1)*¥ = -1. First, suppose M = 0 (mod q) .
Then, if g¢ is the highest power of ¢ dividing a, then since (M, N) = 1, the
second equation in (1) shows that g¢ divides M; and

n = nkp2f,

where p is a divisor of a/q¢ and the exponent f equals 0 or k - 1, depending on
whether N is odd or even, respectively. Thus,

N2 = N2kp2 . 22f;

but p is a kth residue of ¢ by hypothesis; hence, so is p?. Also 2K71 is a ktP
residue of g, since 2 is (by hypothesis) and 2 o 2k=1 = 2k Consequently, N?
is a k'M residue and since (-1)%¥ = -1, the first equation in (10) clearly
implies that b is also a k'™ residue of g, contrary to the hypothesis.

A similar argument settles the case N = 0 (mod g).

Example: Take k = 3, and som =6, p =29, g =31, e =1, and a =p-q = 899;
then p = 5 (mod 8) and the cubic residues of 31 are *1, *2, *4, *8, and *15;
p = 29 is a cubic residue of q. Thus, if b # *1, %2, *4, *15 (mod 31), the
diophantine equation (bx3)2 + (899y3)2 = g% has no solution over the set of
positive integers.

Corollary 3 (to Th. 2): Let a, b, and kK be positive integers satisfying the
hypothesis of Theorem 2. Then, there is no primitive Pythagorean triangle with
one perpendicular side equal to a times a k' integer power, the other b times
a kB power, and the hypotenuse a perfect square.

Proof: Apply Theorem 2 with m = n = 2. We omit the details.
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