MIXED FERMAT CONVOLUTIONS

Gospava B. Dordevic
Faculty of Technology, Department of Mathematics, University of Ni§, 16000 Leskovac, Yugoslavia
(Submitted June 1991)

1. INTRODUCTION

The kth convolution sequences for Fermat polynomials of the first kind (a,(,{‘,),,(x)) and the second
kind (5,(x)) are defined in this paper. Generating functions, recurrence relations, and explicit
representations are given for these polynomials. A differential equation that corresponds to
polynomials-of type (a,‘,f?,,(x)) is presented. Finally, A" convolutions of mixed Fermat polyno-mials
of (¢{(x)) are defined. In some special cases, polynomials of (c5:x)) are transformed into already
known polynomials of (a%,(x)) and of (5,(x).

2. POLYNOMIALS a),(x)

A. F. Horadam [2] defined Fermat polynomials of the first kind 4,(x) and the second kind
B,(x) by

@1 4,(x) = x4, ,(x) =24, ,(x), 4,(x)=0, 4,(x)=1,
and
(22) B.(x) = xB,_1(x) =~ 2b, ,(x), By(x) =2, Bi(x)=x.
Their generating functions are
(2.3) (1-xt+25)7"' = i A (x)t"
n=0

and

1-27 i ,
(2.4) m = EBn(x)t .

From (2.1) and (2.2), we can find a few members of the sequence of polynomials 4, (x) and
B.(x):

A(x)=x, 4(x)=x>-2, A4(x)=x-4x, 4,(x)=x"-6x"+4,
and

By (x) = x*—4, By(x)=x’-6x, B,(x)=x"-8x*+8.

H. W. Gould [1] studied a class of generalized Humbert polynomials P,(m, x, y, p,C)
defined by

(C—mxt +yt™P =Y P,(m,x,y, p,C)t",

n=0

where m>1 is integer and the other parameters are unrestricted in general. The recurrence rela-
tion for the generalized Humbert polynomials is
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CnF —~m(n—1-p)xP,_ +(n-m-mp)yP,_,, =0, n>m=1
where we put P, = P,(m, x, y, p,C).
In this paper we consider the polynomials (a®.0) defined by
al) ()= P,(m,x /m,2,— (k +1),1).

Their generating function is given by
(2.5) F(x,t)=(Q—xt+2my® D = Za(k) ()"
n=0

Comparing (2.3) to (2.5), we can conclude that
(O) 2(x)=A4,(x) [Fermat polynomials (2.1)].
Development of the function (2.5) gives

Za(k) (x)tn — i (k :l—'l)n tn (x - 2tm—l)n
n=0 .

— Z Z( ) (k+l)n AT - (m-1i xn—mz n

n=0\ i=0 ll(n ml)'

Comparison of coefficients of #" in the last equation shows that polynomials («%,(x)) possess
explicit representation as follows:

(k + 1)rz—(m—l)i xn—mi'
il(n—mi))

(2.6) af(x) = Z( 2y

If we differentiate the function F(x, t) (2.5) with respect to 7, and compare coefficients of 7",
we get the three-term recurrence relation ‘

na,(,f‘zn(x) =x(n+ k)a(’f)l,m(x) ~2(n+mk)a® (x), n>m.

—m, m

The initial starting polynomials are

k+
a(()f‘,)n(x):o, aff’)n(x):(—n'l)ﬂ_xn’ nZI,Z,_.,,m—l,

Then, if we differentiate the polynomlals aff,)n(x) (2.6) s times, term by term, we get the
equality [1]:
D’alh) (x) = (k+1),a?) (x), nxs.

snsm

Let the sequence (f,),_, be given by f, = f(r), where

n—i+m(k+1+t))

m-1

f@O)=(n-1 )(
Let A be the standard difference operator defined by Af, = f,,, — f,, and its power by
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Nf,=f, Kf=AA"f)

We find that the next property of aff,),,(x) is very interesting.

The polynomial a,(f,),, (x) is a particular solution of the linear homogeneous differential equa-
tion of the mth order [4],

m
2.7 ym 4 Z ax‘y® =0,

5s=0

with coefficients a, (s=0,1,..., m) given by

2.8) a,=—_uf,
2ms!
From (2.8), we get
a = Ln(n +m(k + l))
2m m m-1
. —1—[(n— l)(n—1+m(k+2)) _n(n +m(k +1)) J
2m m m-1 m m-1
Since
m-1\"" .
f@)=-——| " + term of lower degree,
m
we see that

. __L(m_—l)'""
" 2m\ m '

For m = 2, the differential equation (2.7) is

1, 2k =3 n
X -y = (n+2k+2)y =0,
( 2 )v P 8( )y =0,

and it corresponds to the polynomials a,(,f‘% (x).

For m=2 and k =0, the equation (2.7) is

12 3 n
1-=x* [y"—=xy'+—(n+2)y=0,
( 2 )y =4 8( )y

and it corresponds to Fermat polynomials of the first kind 4, (x).

3. POLYNOMIALS 5%) (x)

In this section we introduce a class of polynomials (b,(,f‘m(x)), keN.

Definition 3.1: The polynomials %) (x) are defined by
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m k+1 ©
G.1 F(x,0)= [—1—“%’—_) =3 b5 ()",

1—xt+2¢" o
Comparing (2.4) to (3.1), we can see that
b,SO% (x)=B,(x) [Fermat polynomials (2.2)].
Expanding the left-hand side of (3.1), we obtain the explicit formula

(3.2 b,S,’?,,(x):'f(—z)i("jl)af,’izm-,m<x>.
i=0

For m=2 and £ =0, the formula (3.2) is

by (x) = ag(x) - 242, ,(x).
That is,
B,(x)=4,(x)-24, ,(%).

and it corresponds to the known relation between the Fermat polynomials 4,(x) and B, (x).

4. MIXED FERMAT CONVOLUTIONS

A. F. Horadam and J. M. Mahon [3] studied a class of polynomials (z{**)(x)), mixed Pell
polynomials. Similarly, we define and then carefully study polynomials (c,(,f’,,f)(x)), mixed Fermat
convolutions, where all parameters are natural numbers.

Definition 4.1: The polynomials (c,‘,f;;)(x)) are given by

a-2"y
(I—xt+2")

=2 G (O,

n=0

@.1) F(x, 1) =

on condition that s+7 > 1.

The polynomials (c,(,f;;)(x)) have some interesting characteristics, some of which are described
in the results that follow.

Theorem 4.1: The polynomials (c,(,f;;)(x)) have the representation
r=j (r "j .
42 &)= 2 ("7 i,
i=0
Proof: By using (4.1), we obtain

- o Y
> = 12"y 1 ( R ]

= A—xt+20"Y* \(1-xt +21"

- S S pwr

n=0 i=0

If we compare coefficients of #” in the last equality, we have (4.2). Using (4.1) again, we obtain
the following representation:
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B0 (x) = Za‘ik‘,>,,,<x)b,£f;”(x).

Also, we see that
F(x t) — & — (1 _ 2tm)ria(r+s—l) (x)tm — i i (_Z)i(f.'}(ﬁs'—l) (x) i
’ (1—xt+26™) r S n=0\i=0 )

From the last equality, we can conclude that
r (r -
0= Y2 (] .
i=0

The Fermat polynomials of the first and of the second kind satisfy a three-term recurrence
relation. But, mixed Fermat convolutions satisfy a four-term recurrence relation of unstandard
form, which we prove in the following result.

Theorem 4.2: The polynomials c(s ") (x) satisfy the recurrence relation

(4.3) nc0(x) = =2mrelte D (x) + x(r + 5)ch 0 () = 2m(r + $)cH D (x), n>m.

n-m,m —m, m
Proof: 1f we differentiate F'(x, ), (4.1), with respect to 7, we get
>ncD ey = —2mrt™ lzc““ D"+ (r+5)(x - 2mt™ )Zc“+1 D",
= n=0 n=0
Comparing coefficients of 7" in the last equality, we have (4.3).
If we differentiate F'(x,1), (4.1), with respect to x, k times, term by term, we find that the
polynomials cff”f )(x) satisfy the equality

(4.4) DD (x) = (r +9), 550 (x) (n2k).

Special Cases
Starting with the equality
a-2m"  (1a-2"y _@a-=2my
A=xt +2¢")*2 (=xt +21")* (Q—xt +2™)""’

we get

I IE —(Zc‘f’,;’(x)t" Zcf,,’;:’(x)t"]
n=0

n=0 n=0
DI LSRN
n=0\k=0
From the last equality, we obtain
(4.5) o (x) = Z (e (%),
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For r = s, the equality (4.5) is
o (¥) = Zc‘i,?m ()7 ().

From the equalities (2.5), (3.1), and (4.1), we obtain:

(4.6) ¢ M(x) =al,P(x), forr=0
and
4.7 ¢ (x) =57, (x), fors=0.

According to (4.4), (4.6), and (4.7), we get the inequalities

Dkaf: D(x) = (5), a8 D(x), forr=0

n-k,m

and
Dkbr(:,r:nl)(x) =("ke f,’ikr)m(x), fors=0.

For r = 0, the equality (4.5) becomes
cpm (%) = Zaff e (OB ().
According to (4.3) and (4.5), we have

ny ¢ (el (x) = =2mscChe oD (x) + 2xse D (x) - 4msc D (x), nzm.

—k,m n-m, m n-Lm n—-m,m

From the equalities (4.2) and (4.7), for j=5=0, r =k +1, it follows that
B () = Z( (4} @
Finally, from the equalities (4.2) and (4.6), for j=r =0, s=k +1, we see that

a®),(x) = kzﬂ( 2y (" + l)aﬁ’ii,.,-,m(x)
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