
ELEMENTARY PROBLEMS AND SOLUTIONS 

Edited hy 
Stanley Rablnowitz 

Please send all material for ELEMENTARY PROBLEMS AND SOL UTIONS to Dr. STANLEY 
RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-42J2 USA. Correspondence 
may also be sent to the problem editor by electronic mail to 72717.3515@compuserve.com on 
Internet. All correspondence will be acknowledged. 

Each solution should be on a separate sheet (or sheets) and must be received within six 
months of publication of the problem. Solutions typed in the format used below will be given 
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BASIC FORMULAS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 

A7+2 " Ln+i +Ln7 LQ = 2, Lx = l. 

Also, a = (l + V5)/2, £ = ( l -V5)/2 , Fn = (an-J3n)/y[59md Ln = an+(3n. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-742 Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University 
Warrensburg, MO 

Pell numbers are defined by PQ = 0, Px = 1, and Pn+l = 2Pn + Pn_x, for n>\. Show that 

B-743 Proposed by Richard Andre-Jeannin, Longwy, France 

Find the modulus and the argument of the complex numbers 

B + i4aJr2 , a+iJ]3 + 2 
u = and v = . 

2 2 
B-744 Proposed by Herta T. Freitag, Roanoke, VA 

Let n and k be even positive integers. Prove that L2n +LAn +L6n +--- + L2kn is divisible by 
4-
B-745 Proposed by Richard Andre-Jeannin, Longwy, France 

Show that 
1 00 1 00 

«=1 ̂ 2n n=\ ^ 2 « - n / 2 n + l 
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B-746 Proposed by Seung-Jin Bang, Albany, CA 

Solve the recurrence equation an+l = Aa\ + 3aw, n > 0, with initial condition a0 - 1 / 2. 

B-747 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 
Let 

00 1 00 1 

Si = Y and S2 = Y . 
£2(-iyL2n_x-i ^c-iyz^+i 

Prove that Sx/ S2 =V5. 

SOLUTIONS 

Recurrence with a Twist 

B-714 Proposed by J. R Goggins, Whiteinch, Glasgow, Scotland 
(Vol 30, no. 2, May 1992) 

Define a sequence Gn by G0 = 0, Gx = 4, and Gn+2 - 3GW+1 - Gn - 2 for n > 0. Express G„ in 
terms of Fibonacci and/or Lucas numbers. 

Solution by Graham Lord, Stanford CA 

We claim that G„ = 2Z2w_1 +2. To see this, note that 

^2»+3 ~ Lln+2 + ^2«+l ~ 2Z2w+1 + Z2„ = 2L2n+l + (Z>2„+1 ~ ^2«-l) ~ ^^2«+l ~ ^2«-l-

Doubling and adding 2 to both sides gives 
2Z2„+3 + 2 = 3(2Z2„+1 + 2) - (2Z2„_1 + 2) - 2. 

Thus, Gn and 2L2n_l +2 both satisfy the same recurrence. Since they also have the same initial 
values, they must represent the same sequence. 

Solvers submitted many other correct solutions, including F2n+2 + F2n_4 + 2, L2n + Z2„_3 + 2, 
Lin +Fm-2 +^2«-4 +2, 5F2ll - L 2 n + 2, Z ^ + 5 / ^ +2, a/*J 6F2/? -2F2w+1 +2. 

4̂foo solved by Richard Andre-Jeannin, Mohammad K. Azarian, Seung-Jin Bang, Brian D. 
Beasley, Paul S. Bruckman, Leonard A. G Dresel, Russell Euler, Piero Filipponi, Herta T. 
Freitag; Jane Friedman, Marquis Griffith, Ryan Jackson & Mika Wheeler (jointly); Russell 
Jay Hendel, Christos. Kavuklis, Harris Kwong, Carl Libis, Dorka 01. Popova, Bob Prielipp, 
Don Redmond, H.-J. Seiffert, Sahib Singh, and Ralph Thomas. 

DivisibiSitv by Fibonacci Squares 
B-715 Proposed by Piero Filipponi, Fond U. Bordoni, Rome, Italy 

(Vol 30, no. 2, May 1992) 

Prove that, if s > 2, 
Fm = 0 (mod F? ) if and only if m = 0 (mod sFs). 

Solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI 

Our solution will use the following known results (where u is an integer larger than 2): 
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(1) FU\FV if and only if u\v. (For a proof, see [1], p. 39.) 
(2) F* \Fur if and only if Fu \r (For a proof, see [2], p. 3.) 

Let s be an integer larger than 2. 

If Fm - 0 (modF,2), thenF/ | iv By result (1) we have s\m. Thus, m = js for some integer 
j . Hence, i%2|i^ soFJj by result (2). Therefore, j = kFs for some integer t Thus, m = js = 
ksFs, making m = 0 (mod si^). 

Conversely, if m = 0 (modsFs), then m = fcsF, for some integer k. Since Fs\kFs, by result (2) 
we have i f | i ^ , SO /r2|F«- Hence, Fm - 0 (modi?). 

Somer proved that, ifk>2 and s>2, then 

Fm=0 (modFs
k) if and only if m = 0 (mod^i^- 1) , 

where d = 2 if both k>3 and s = 3 (mod 6) and d-\ otherwise. 
Seiffert gave an analog for Lucas numbers if s>\\ Lm=0 (mod I?s) if and only if m = 0 

(mod sLs) and rn/s is odd. 

References: 
1. Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Santa Clara, CA: The Fibonacci 

Association, 1979. 
2. V. E. Hoggatt, Jr.,. & Marjorie Bicknell-Johnson. "Divisibility by Fibonacci and Lucas 

Squares." The Fibonacci Quarterly 15 (1977):3-8. 
Also solved by Paul S. Bruckman, Leonard A. G. Dresel, H.-J. Seiffert, Sahib Singh, 
Lawrence Somer, and the proposer. 

The Sum of Two Lucas Numbers 

B-716 Proposed by Stanley Rabinowitz, MathPro Press, Westford, MA 
(Vol 30, no.2, May 1992) 

If a and b have the same parity, prove that La + Lb cannot be a prime larger than 5. 

Solution by Russell Jay Hendel, Patchogue, NY 

The problem tacitly assumes that a, b > 0 since, if we allow negative subscripts, then a = 5 
and b = -3 have the same parity, but L5 + L_3 = 11 + (-4) = 7, a prime larger than 5. Accordingly, 
assume a ,b>0. 

Without loss of generality, further assume that a > b. Let n - {a + b) 12 and m = {a-b)l2. 
Since a and b have the same parity, m and n are integers and 0<m<n. 

We make use of the following well-known formulas (see [1], p. 177): 

L„+m+(-lTLn_m = LmLn, (1) 

Ln+m ~ (~ l T Ln-m = 5FmFn • ( 2 ) 

If m is even, then by result (1) we have La+Lb= Ln+m + Ln_m = LmLn and this product is 
composite unless n-\ and m - 0, in which case La-\-Lb-2, which is not larger than 5. 

1993] 279 



ELEMENTARY PROBLEMS AND SOLUTIONS 

If m is odd, then by result (2) we have La + Lb = Ln+m + Ln_m = 5FWF„ and this product is 
composite unless -Fw = Fn = 1, in which case La+Lb = 5, which is not larger than 5. 

Reference: 
1. S. Vajda. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. 

Chichester: Ellis Horwood Ltd., 1989. 
Also solved by Glenn Bookhout, Paul S. Bruckman, Leonard A. G Dresel, Herta T. Freitag, 
Harris Kwong, Bob Prielipp, H.-J. Seiffert, Sahib Singh, Ralph Thomas, and the proposer. A 
partial solution was submitted by Charles Ashbacher. 

Expanding arctan as a Lucas Series 

B-717 Proposed by L. Kuipers, Sierre, Switzerland 
(Vol 30, no. 2, May 1992) 

Show that 
2 A (-1)" L 

arctan— = > -— 
5 ~ 2/f + l 2 

2«+l ' 

Composite solution by Bob Prielipp, University of Wisconsin, Oshkosh, WI and Graham Lord, 
Stanford, CA 

We use the following well-known facts: 

If Tari converges to A and Z#„ converges to B, then H(an +bn) converges to A + B, (1) 

a r c t a n x - Y - t ^ x u + 1 , |x|< 1, (2) 

x + y 
arctanx + arctany = arctan , xy < 1. (3) 

1-xy 
[For (1), see [1], p. 376. For (2), see [2], p. 51. For (3), which is related to the familiar formula 
tan(x+j/) = (tanx + tan>^/(l-tanxtanj/), see [2], p. 49.] 

We will also use the facts that Ln = an + /}", a + fi = 1, ap = -1 and note that \j3\<\a\< 2. 
Then, if |z|>|a|, 

f (-ir ^w+i = y(-irr«Yw+1,y(-i)V^Y"tl 

„t-02» + l 22"+1 %2n + l{z) „=o2" + l U J 

= arctan! — I + arctan r ^ f/̂  (a+p)iz z 
nJ — + arctan — = arctan- . - arctan-^— 
\z) U ; l-aj3/z2 z2 i 

zz + l 

The original proposal is a special case of this result, with z =2. 
Bruckman showed that 

2x ^ ( - 1 ) " Lm+i(x) arctan— = Y -^-^- • ^" + 1 \ ' , 5 ~02n + \ 22n+l 

where Zw(x) = a{x)m + /?(x)m, a(x) = (x + Vx2+4) /2 and /?(x) = (x - Vx2+4) /2. 
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Seiffert showed that 
i + 2V5 ^{-\y F2 

^arctan 2u 
2n+l 

V5 3 ^02n + l 22n+l 

and, ifp and q are natural numbers of different parity with q>p + 2, then 

Redmond showed that if Pn = cQa" + cxj3n. where a, J3, c0 and cx are arbitrary real numbers, then 

~Qan + b xan+b °Jo 1 + f 1Jo l + ta 

for \x\> max(| a\, |/?|). He used this to obtain some interesting results, such as 
00 ( i\n 

^03« + 123w+1 6 19 3 4 9 

References: 
1. R. Courant. Differential and Integral Calculus. Vol. I. London: Blackle & Son, Ltd., 1937. 
2. I. S. Gradshteyn & I. M. Ryzhik. Tables of Integrals, Series and Products. San Diego, CA: 

Academic Press, Inc., 1980. 
Also solved by Richard Andre-Jeannin, Seung-Jin Bang, Paul S« Bruckman, Leonard A. G. 
Dresel, Russell Euler, Hero Filipponi, Russell Jay Hendel, Harris Kwong, Igor 01 Popov, 
Don Redmond, H.-J. Seiffert, Ralph Thomas, and the proposer. 

Golden Power 

B-718 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 30, no. 3, August 1992) 

Prove that [{Fn +Ln)a + (Fn_l + L^)] / 2 is a power of the golden ratio, a. 

Solution by John Ivie, Saratoga, CA 

This follows from the two well-known identities: 

Fn+Ln=2Fn+l (1) 
and 

an=Fna + F^l9 (2) 

which can easily be proved by means of the Binet formulas. 
We thus have that 

{Fn + Ln)a + ( f ^ + L„_x) = 2Fn+la + 2Fn ^ f a + F=an+i 
2 2 n+l n 

Also solved by Charles Ashbacher, Michel Ballieu, Seung-Jin Bang, Brian D. Beasley, Scott 
H. Brown, Paul S. Bruckman, Charles K Cook, Russell Euler, Jane Friedman, Pentti 
Haukkanen, Hans Kappus, Joseph J, Kostal, Graham Lord, Dorka 01 Popova, Bob Prielipp, 
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H.-J. Seiffert, Tony Shannon, Sahib Singh, Lawrence Somer, Ralph Thomas, and the 
proposer. 

A Pell Factorization 

B-719 Proposed by Herta T. Freitag, Roanoke, VA 
(Vol 30, no. 3, August 1992) 

Let Pn be the rP Pell number (defined by P0 = 09PX = 1, and Pn+2 = 2Pn+l + Pn for n > 0). Let 
a be an odd integer. Show how to factor P2

+a + P2 into a product of Pell numbers. 
How should this problem be modified if a is even? 

Solution by Paul S. Bruckman, Edmonds, WA 

We establish the following identity, valid for all n and a: 

P2 -(-\\a p2 - P P 
1 n+a V V A n Aa*2n+a' 

Proof: We employ the Binet formula: Pm = (um - vm) IJ$, where u = 1 + V2 and v = 1 - 4l. 
Note that uv = - 1 . Then 

p^-i-iyp^^2"*2* -2{-\y+a +v2n+2a -(-iy{u2n ~2{-\y +v2n)] 

= l[u
2n+2a + v2n+2a ~(-l)a{u2n + v2")] 

= ±i/2n+fl(i/fl - v a ) + ±v2n+a(va ~ua) 

Therefore, 
( i^a+P„2, if a is odd; 

l ^ - i ^ 2 , if a is even. 
a 2n+a I ^ 2 D 2 

P/a awrf Somer note that the result is valid not only for Pell numbers, but more generally for 
any sequence that satisfies the recurrence relation un+2 = kun+l + un with u0 =0 and ut - 1. 

Popova shows, by induction, the more general result 
2/w-l 

V V rn+ka - rar2mar2n+{2m-l)a ' r2a> 
k=0 

where a andm are arbitrary positive integers. 

Also solved by Charles Ashbacher, M A. Ballieu, Russell Euler, Hans Kappus, Juan Pla, 
Dorka 01 Popova, Bob Prielipp, H.-J. Seiffert, Tony Shannon, Lawrence Somer, and the 
proposer. 

Errata: The name of the second proposer of Problem B-738 (Vol. 31, no. 2, 1993) should be 
Cecil O. Alford. 
Brian D. Beasley was inadvertently omitted as a solver for Problems B-712 and B-713. 
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