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A well-known result concerning partial sums of the reciprocals of the natural numbers
1+1/2+1/3+---+1/n, is that they never equal an integer (for n»>1). A similar result
concerning partial sums of the Fibonacci numbers, /=1, F, =L F, =F,_,+F, , (n=3), is

trivial because
111 1 1 1 1 1
3<=+-+—+—+—F+—+—+—
1 1.2 3 5 8 13 21
However, some interesting questions arise if we consider integer multiples of the reciprocals.
Specifically, since F,,,,/F,, >1, the "integer status" of F,/F,+F,/F,+---+F,,, / F, is worth
investigating (n > 3).

Since (F,, F,)=F,,, [1; Th. VI], the following result tells us that F, /K +F/F)+--

n>=m

+--- <4

+F, .,/ F, is never an integer for n>3.

Theorem 1: 1If {c,} is an arbitrary sequence of integers for which F; | c, whenever g is an odd
prime, then the sum ¢,/ F +¢,/ F, +--+¢, / F,, can never be an integer for n>3.

Proof: If n>3, then, by Bertrand's Postulate [2; p. 343], there is at least one odd prime
number p in the interval 1n/2,n]. For 1 <i<n, let F, = (F,F, - F,)/ F,. We then have
F, ifi#zp

F,E)=y"
F ){1 ifi=p

because (F,, F;)=F, ,y=F =1for j# pand 1< j<n. Now

Q.8 5 ahtahtt6k,

R F F RE, - F,

n

Since F |1 F, -+ F,, Fplc,Fi fori#p, and F, Icpﬁp [by hypothesis and (F),, Fp) =1], it follows
that
Gh+6F+--+6F,

can never be an integer.

Theorem 1 is a special case of a result that will be stated shortly. Theorem 1 was singled out
because it is easily digested and its proof also works in a more general setting.

Let P and Q be relatively prime integers, and let U, and V,, be the generalized Fibonacci and
Lucas sequences, respectively, defined by (see [1] for information on these sequences):

Un :PUn—l-‘QUn—2>UO ZO,UI =1 and Vn:PVn—l_QVn—ZaVO :2,1/1 =P
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Since (U,,U,,) =U, » [1; Th. VI], it seems that we should be able to replace the F's by the
Us in Theorem 1 and its proof and have a more general result. This is not the case, however,
because U,, =0 and U, = £1 are possibilities for values of m, j>2. If we require P (, so that
P=1=Qand P =-1=(Q are eliminated, then the discussion following Theorem I in [1] tells us
that U, and V, are nonzero for n> 1. Thus, we require that P # Q.

The "revised proof" of Theorem 1 would be invalid if U/, = +1. This can happen. In fact, if
P =2 and Q =3, then it is easily seen that U; =1. Certainly, if P >0 and Q <0, then U, >1 and
V,>1forn>1. For other values of P and (O, the situation is not easily resolved; thus, we reflect

this in the statement of the general result.

Theorem 2: Let P and O be chosen so that [[/,|> 1 for all odd primes g. If {c;} is an arbitrary

sequence of integers for which U, fc, whenever g is an odd prime, then the sum

¢, /U, +¢c,/Uy+---+c, /U, can never be an integer for n>3.

Proof: If we replace F'sby U's, F's by U's, etc., in the proof of Theorem 1, then we get a
proof of the fact that, for n>3, ¢, /U, +¢, /U, +--- +c, / U, is never an integer.

The situation is more complicated for the V;'s. For example, if P =4 and Q = 7, then V; = 4,

V,=2, and V3 =-20, so 1/V;+1/V,+(-5)/V;=1. The following results reveal the source of
the complication and a condition that eliminates it.
Recall that V, = PV, —QV,_,,V, =2,V; =P, and (P,Q)=1.

Lemma 1: 1f i is & natural number, then (V;, P) = P when i is odd and (V;, P) = (2, P) when i is
even. Furthermore, if m is odd and j is a natural number that is relatively prime to m, then

(V,n,V;) = P when jis odd, (V,,,V;) = (2, P) when is even, and P, V;) =1 when is even.

Proof:  (V;,P)=(PV,1=QV, 5, P)=(-QV, 5, P)= Vi, P) [since (P,Q)=1].  This
implies that (V;, P) = (V;_,, P) = (V;_4, P)=---=(V}, P)= P wheniis odd and (V}, P) = (V;,, P) =
(2, P) when i is even.

We now consider natural numbers m and j where m is odd and j is relatively prime to m.
Since (Uzy, Us;) =Ugm 2jy = U, = P and Uy, =U,V, for any natural number n, it follows that
P=(U,V,,,U;V;). This shows that (V,,,7;)|P. This and the facts that (V;, P) = P when 7 is odd
and (V;, P)=(2, P) when i is even imply that (V/,,,V,)= P when j is odd and (V,,,V;)=(2, P)
when j is even. Since (2, P) =1 if P is odd, it follows that (P™'V,,,V;) =1 when P is odd and j is
even. If P is even, then

(P, 2) = (P PV, = OV, 2), 2) = Ve = P70V, 2)
= (—P7'QV,2,2) [since (V,,1,2) = (P, 2)=2]
=(P™,,2) [(Q,2)=1since (O, P)=1].
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This implies that (P~,,,2)=(P™¥,,2)=1. That is, P"'V,, is odd. Thus, (P“IV,,,,VJ-) =1 also

when P is even and j is even.

Remark 1: 1t is not always true that (P"Vm,Vj) =1 when j is odd [again, m is an odd natural
number and (m, j)=1]. For example, if P =6 and Q = 1, then V, =2,V =6,V, =34, V; =198,
and (67'7;,7;) = (336) =3. Actually, one can prove by mathematical induction that there exist
integers k, and 7, such that

y_ {k,,P3 +nP(-0)"™Y? if nis odd,

r,P* +2(-Q)"? if n is even.

This form of ¥, shows that  and hence (P~'V,,,V;) = (m, P).

Theorem 3: Let P and Q be chosen so that IP‘IVq| >1 for all odd primes g. If {c;} is an arbi-

trary sequence of integers for which P"II/; c, whenever g is an odd prime, then the sum

¢ /Vy+c, !V, +---+c,/V, can never be an integer for n>3.

Proof: Let p be an odd prime number in the interval Jn/2, n] and let

=u for1<i<n.

Since there are at least [(7—3)/2] odd numbers in the set {1,2,...,i—Li+1,...,p—1,p+1,...,n}
and (¥, P) = P when kis odd, it follows that

)

VPP fori = p.

This is not the case for ¢,V ,, as we now demonstrate.

Vp pln-3)2] | Cpi;;, PN P—le pln-3y2] I ¢, _VLV:;__I{’L (since V= P)
P
P, jo, LV Y,
plp Vv
p

Since there are exactly [(n—3)/2] odd numbers in the set {2,3,...,p—1,p+1,...,n},

P-[(n-3)/2]VV -V Tif [n/2 4
p V2 —r=c, [V PV |
i=1 j=1

P
J#(p-1)2
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By hypothesis, P~V |c,, and by Lemma 1, (P"'V,,V,)=1and (P"V,, P, ,,,) =1 (since

2j+1 is not divisible by p). This implies VPP[("_3)/ 2 ch17p. Thus, as in the proof of Theorem 1,

we conclude that ¢, /V, +¢, /V, +--- +c, /V, can never be an integer for n>3.

Corollary 1: If P and Q are chosen so that |U,I1>1 [|P*1Vq| >1] for all odd primes g, then the
sum

Uy Us, U {KL_V__]

—+
Ul U2 Un Vl V2 Vn

can never be an integer for n>3.
Proof: If ¢ is an odd prime, then (U,,,,U,) =U, =1 [(¥,,,, P"¥,) =1 by Lemma 1].
Corollary 2: Let k be a fixed positive integer. Let P and O be chosen so that |U,,|>|U, | for all

odd primes g. If {c;} is an arbitrary sequence of integers for which U, U, ! | ¢, whenever q is an

odd prime, then the sum ¢, /U, +c¢, /U,, +---+c¢, /U, can never be an integer for n>3.

Remark 2: If o and B are the roots of x> — Px+(Q = 0, then it is well known that

n n

o"-B
o—

U =

n

and V, =a" +B".
These forms establish the well-known facts that

U

i

x =ViU (n-Dk ~ QkU (n-2)k and V,, = VkV(n—l)k - QkV(n—z)k-

Furthermore, using V. =V,.V,_1y -QkV(n_2)k and mathematical induction, it is easy to see that
Vi [Vi2i+1yr Whenever i is a positive integer. Also, fork=2,3, 4, ...,

(VkaQ):(PVk—l_QVk—ZaQ):(PVk—l’Q):(Vk—laQ):"':(Vl, 0)=1

Proof of Corollary 2: If (7,, =U, U, then U,, = Vk(jn_1 -0 _,, a generalized Fibonacci
sequence, and |l7 41> 1 for all odd primes g. It then follows from Theorem 2 that, if U q 1 ¢, when-
ever ¢ is an odd prime, then ¢, /U, +c, / U,+---+c, /U, is never an integer for n>3. Thus, if
quU,:1 I ¢, whenever g is an odd prime, then Uy (¢, /U, +¢, /Uy, +---+¢,/U,) is never an
integer for » >3, and consequently, ¢, /U, +¢, /U, +---+¢, /U, is never an integer for n>3.
Corollary 3: Let k be a fixed positive integer. Let P and Q be chosen so that IP‘Iqu] > 1 for all

odd primes g. If {c;} is an arbitrary sequence of integers for which P'IV;,C | ¢, whenever g is an

odd prime, then the sum ¢, /V}, +c¢, /V,, +---+c, /V,, can never be an integer for n>3.
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Proof: IfV, =V,,, then v, = V,J;n_l ~ QP _,, a generalized Lucas sequence, and |P'11;q| >1

for all odd primes g. Since P‘ll}q I ¢,, the result follows from Theorem 3.

Corollary 4: 1If {c,} is an arbitrary sequence of integers for which g | c, whenever ¢ is prime,
then the sum ¢,/ 14+¢,/2+-:-+c, /n can never be an integer for n>2.

Proof: YU, =n, thenU,=2U,_,-U,_,. Thatis, {n} is a generalized Fibonacci sequence
for which Theorem 2 applies.

Corollary 5: Let P and Q be chosen so that |U 41>1 [|P_1Vql >1] for all odd primes ¢. If {c;} is

an arbitrary sequence of integers for which U, [ c, [P’qu I ¢,] whenever q is an odd prime, then
the sum ¢; /U, +¢, /Uy +-+-+¢,/U,,_, [c;/V,+¢,/V3+---+¢c,/V,,,] can never be an integer
forn>2.

Proof:  Consider the statement of Theorem 2 [Theorem 3] and just take c,, =U,;
[, ;= vV, j]-

Remark 3: Results for U's and V's with even subscripts are special cases of Corollaries 2 and 3.
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