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A well-known result concerning partial sums of the reciprocals of the natural numbers 
1 + 1/2 + 1/3 + —hl/w, is that they never equal an integer (for n>\). A similar result 
concerning partial sums of the Fibonacci numbers, Fx = l,F2 = 1, Fn - Fn_l+Fn_2 (n > 3), is 
trivial because 

. 1 1 1 1 1 1 1 1 
3 <- + - + — + - + - + - + — + — + ---<4. 

1 1 2 3 5 8 13 21 
However, some interesting questions arise if we consider integer multiples of the reciprocals. 
Specifically, since Fm+l/Fm>l, the "integer status" of F2 /Fx+F31F2 + ••• + Fn+l IFn is worth 
investigating (n > 3). 

Since (Fn9Fm) = F(nm) [1; Th. VI], the following result tells us that F2IF{+F3/F2+ — 
+F„+l / F„ is never an integer for n > 3. 
Theorem 1: If {Cj} is an arbitrary sequence of integers for which Fq\cq whenever q is an odd 
prime, then the sum q /FY + c21F2 + -~+'cnlFn can never be an integer for n > 3. 

Proof: If n > 3, then, by Bertrand's Postulate [2; p. 343], there is at least one odd prime 
number/? in the interval ]n12, n\ For 1 < / < n, let Ft = (F{F2 • • • Fn) IFf. We then have 

~ \Fp i£i*p 
[1 ifi = p 

because (Fp,Fj) = F^pj) = Fx = 1 for j'*p and \<j<n. Now 

Cl \°2 \ \°n
 = =

C l ^ l + C 2 ^ 2 + " , + ^ 
M 1*2 Fn FXF2 "• Fn 

Since Fp\FiF2 ~-F„, F^c^ for /' * p , and Fp \cpFp [by hypothesis and (Fp,Fp) = 1], it follows 
that 

qF1+qF2 + » > v + ^ 
m-Fn-' 

can never be an integer.' 

Theorem 1 is a special case of a result that will be stated shortly. Theorem 1 was singled out 
because it is easily digested and its proof also works in a more general setting. 

Let P and Q be relatively prime integers, and let U„ and V„ be the generalized Fibonacci and 
Lucas sequences, respectively, defined by (see [1] for information on these sequences): 

Un=PUn_l-QUn_2,U0 = 0,Ul = l and V„ = PV^-QV^Vo =2,Vx = P. 
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Since (Un, Um) - U^m) [1; Th. VI], it seems that we should be able to replace the Fs by the 
Us in Theorem 1 and its proof and have a more general result. This is not the case, however, 
because Um = 0 and Uj = ±1 are possibilities for values of m, j > 2. If we require P & Q, so that 
P = l = Q and P = -1 = Q are eliminated, then the discussion following Theorem I in [1] tells us 
that Un and Vn are nonzero for n > 1. Thus, we require that P *Q. 

The "revised proof of Theorem 1 would be invalid if Up-±l. This can happen. In fact, if 
P = 2 and Q = 3, then it is easily seen that U3 = 1. Certainly, if P > 0 and Q < 0, then Un>\ and 
Vn > 1 for n > 1. For other values of P and Q, the situation is not easily resolved; thus, we reflect 
this in the statement of the general result. 

Theorem 2: Let P and Q be chosen so that \Uq\ > 1 for all odd primes q. If {Cj} is an arbitrary 

sequence of integers for which Uq j cq whenever q is an odd prime, then the sum 

cl/Ul+c2/U2 + -'+cn/Un can never be an integer for n > 3. 

Proof: If we replace F's by t/'s, F's by f/'s, etc., in the proof of Theorem 1, then we get a 
proof of the fact that, for n > 3, cx I Ux + c2 / U2 + • '• * + c„ I Un is never an integer. 

The situation is more complicated for the J^'s. For example, if P = 4 and Q = 7, then Vl = 4, 
V2 = 2, and V3 = -20, so \IVX + \IV2 + (-5)/V3 = 1. The following results reveal the source of 
the complication and a condition that eliminates it. 

Recall that Vn = PV„_, - QVn_2, V0 = 2, Vx = P, and (P, 0 = 1. 

Lemma 1: If/ is a natural number, then (Vi,P)-P when i- is odd and (^-, P) = (2, P) when /' is 
even. Furthermore, if m is odd and j is a natural number that is relatively prime to m, then 

(Vm, Vj)- P wheny is odd, (Vm, Vj) = (2, P) wheny' is even, and (P~lVm,Vj) = 1 wheny is even. 

Proof: (Ti9P) = (PV^ -QV,_2, P) - ( -2^_2 , P) - (^_2, P) [since (P, 0 = 1]. This 
implies that (ViyP) = (Vf_2, P) = (J^_4, P) = .-•• = (F1? P) - P when i.is odd and (Fy, P) = (F0, P) = 
(2, P) when z is even. 

We now consider natural numbers m and j where m is odd and 7 is relatively prime to m. 
Since (U2m, U2j) = U{2m^2j) = U2 = P and U2n = UnVn for any natural number n, it follows that 
P = ( t / - ^ , [/;F,). This shows that (Vm ,Vj)\P. This and the facts that (Vi9P) = P when z is odd 
and (Vi9 P) - (2, P) when z is even imply that (Vm, Vf) = P when7 is odd and (Vm, Vj) = (2, P) 
wheny is even. Since (2, P) = 1 if P is odd, it follows that (P~LVm, Vj) = 1 when P is odd mdj is 
even. If P is even, then 

( P - % , 2) = ( P " 1 ^ ^ ! - QVm_2), 2) = ( ^ - P~lQVm_2,2) 
= (--P_ 1fi^2.2) [since (Fm_I; 2) = (P, 2) = 2] 
= (^"1^-2> 2) [(Q, 2) = 1 since (Q, P) = 1]. 
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This implies that (P~lVm92) = (p-%,2) = 1. That is, P"lVm is odd. Thus, (P'lVm9Vj) = 1 also 
when P is even andy is even. 

Remark 1: It is not always true that (P~lVm,Vj) = 1 when j is odd [again, m is an odd natural 
number and (w, j) = 1]. For example, ifP = 6 and Q = 1, then V0 = 2,VX= 6,V2 = 34, V3 = 198, 
and (6"1Fr

3,F1) = (33,6) = 3. Actually, one can prove by mathematical induction that there exist 
integers kn and rn such that 

_UnP3+nP(-Q)(n-1)/2 if wis odd, 

\rnP2 + 2 ( - 0 w / 2 if n is even. 

This form of Vn shows that and hence (P~lVm ,Vj) = (m, P). 

Theorem 3: Let P and 0 be chosen so that \P"lVq\> 1 for all odd primes 9. If {Cj} is an arbi-

trary sequence of integers for which P~lVq \cq whenever q is an odd prime, then the sum 

<\ IVX +c2 IV2 + •••+£„ IVn can never be an integer for n > 3. 

Proof: Let/? be an odd prime number in the interval ]n 12, n] and let 

^ vy2-vn f j ^ . ^ 

Since there are at least [(w-3)/2] odd numbers in the set {1,2,...,7-l,z + l,...,/?-l,/? + !,...,«} 
and (J^ ,P) = P when A: is odd, it follows that 

Vpp[(n-3)/2] |c_^ for/* p . 

This is not the case for cpVp9 as we now demonstrate. 

VpP^-m\\CpYp^p^VpP^-m\\cm^^ (since F1=JP) 

__,... p-[i"-m]v2v3-v„ 
<5> P V \C : — ~ 
w v P*P y 

p 

Since there are exactly [(n - 3) / 2 ] odd numbers in the set {2,3,...,/?-1, /? +1,...,«}, 
• ' ( Y •• 

cr 
> V / = i ) \ ; = i 
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By hypothesis, P'lVp\cp9 and by Lemma 1, {P~lVpJ2i) = \ and (P'lVp9P~lV2J+l) = 1 (since 

2j +1 is not divisible by/?). This implies VpP[(n~3)/2] \ cpVp. Thus, as in the proof of Theorem 1, 
we conclude that cx I Vx + c2 IV2 + • • • + cn I Vn can never be an integer for n > 3. 

sum 
Corollary 1: IfP and Q are chosen so that \Uq\>\ [\P lVq\> 1] for all odd primes q, then the 

u2 u3 un+l ^ - + _ 2 L + . . .+_«±L 

^ u2 un 

can never be an integer for n > 3. 

P W / - If g is an odd prime, then (Uq+1, Uq) = ^ = 1 [(J^+1, P"Vg) = 1 by Lemma 1]. 

Corollary 2: Let A:be a fixed positive integer. Let P and Q be chosen so that \Uqk\> \Uk\ for all 
odd primes q. If {c^} is an arbitrary sequence of integers for which UqkU^ \ cq whenever q is an 
odd prime, then the sum clIUk

Jtc2lU2k +---+cn/Unk can never be an integer for n > 3. 

Remark 2: If a and /3 are the roots of x2 - Px + Q - 0, then it is well known that 

U»=^—f- andF w =a" + /3" . 

These forms establish the well-known facts that 

Unk = VkU{n_l)k - QkU{n_2)k and Vnk = VkV{n_l)k - Q%_2)k. 

Furthermore, using Vnk = VkV(n_l)k - QkV^n_2)k and mathematical induction, it is easy to see that 
Vk\V(2i+i)k whenever i is a positive integer. Also, for k = 2, 3, 4,..., 

(Vk,0 = (PVk-X-QVk_2,Q) = ( P J ^ , 0 = ( T w , 0 = - = ( ^ 0 = 1. 

Proof of Corollary 2: If £/„ = C/^C/;1, then #n = Vjfi^ - QhUn_29 a generalized Fibonacci 

sequence, and |C/ |> 1 for all odd primes q. It then follows from Theorem 2 that, if Uq \ cq when-

ever q is an odd prime, then cl/Ul+c2/U2 + -'+cn/Un is never an integer for n>3. Thus, if 

UqkUk
l \cq whenever q is an odd prime, then Uk(cl/Uk+c2/U2k + ••• + £„ / ^ ) *s n e v e r a n 

integer for # > 3, and consequently, cl/Uk+c2/U2k+--+cn/ Unk is never an integer for n > 3. 

Corollary 3: Let A: be a fixed positive integer. Let P and Q be chosen so that \P~lVqk\ > 1 for all 

odd primes q. If {c.} is an arbitrary sequence of integers for which P~lVqk \ cq whenever q is an 
odd prime, then the sum cx I Vk + c2 IV2k + • • • + cn I Vnk can never be an integer for n > 3. 
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Proof: If Vn = Vnk, then Vn - V^^ - QkVn_2, a generalized Lucas sequence, and | P"lVq \ > 1 

for all odd primes q. Since P T^ J Ĉ  , the result follows from Theorem 3. 

Corollary 4: If {Cj} is an arbitrary sequence of integers for which q \cq whenever q is prime, 
then the sum cx I l + c2 / 2+ •*• + c„ //? can never be an integer for n > 2. 

Proof: If C/„ = «, then C/w = 2Un_l - Un_2. That is, {n} is a generalized Fibonacci sequence 
for which Theorem 2 applies. 

Corollary 5: Let P and Q be chosen so that \Uq\ > 1 [|P_1J^|> 1] for all odd primes q. If {Cj} is 

an arbitrary sequence of integers for which Uq \ cq [P~lVq | cq] whenever q is an odd prime, then 
the sum clIUl +c2 /U3 + ••• +cw /U2n_x [cxIVX +c2 /V3 + ••• +cwIV2n_{\ can never be an integer 
forw>2. 

Proof: Consider the statement of Theorem 2 [Theorem 3] and just take c2j = U2j 

[c2j=V2jl 

Remark 3: Results for U* s and V* s with even subscripts are special cases of Corollaries 2 and 3. 
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