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INTRODUCTION

Triangular arrays of numbers similar to or derived from Pascal's triangle frequently appear in
the mathematical literature. (See, for example, [3], [5], and [8].) The purpose of this paper is to
study a generalization of the array in [8]. In section 1, recursion formulas for the row and diag-
onal row sums are derived. In section 2, the determinants of a set of matrices associated with the
triangular array of [8] are calculated.

1. GENERAL PROPERTIES OF THE ARRAYS

Consider a family of triangular arrays of numbers, indexed by the reals. For each a €R, the
array is a doubly infinite set of numbers d(a; », k); n, k €Z, such that:
d(a;n, k)=0, n<0
d(a;n k)=0, k<Oork>n
d(a;0,0)=a,
d(a;1,0)=d(a;1,1)=1; and
d(a;n, k)=d(a;n-2,k-1)+d(a;n-1,k-1)+d(a;n-1,k), n=2.

e ap s

The triangular array studied by Wong & Maddocks [8] corresponds to the case a =1. Their gen-
eral term M, , corresponds to the term d(1; k +r,r) here. Tables 1, 2, and 3 contain the initial
rows for the arrays d(1;n, k), d(0; n, k), and the general array d(a; n, k), respectively. As men-
tioned above, Table 1 appears in [8]. It also appears in [1].

TABLE 1. d(I;n,k) TABLE 2. d(0; n, k)
1 0
1 1 1 1
1 3 3 1 2 1
1 5 5 1 1 4 4 1
1 7 13 7 1 1 6 10 6 1

TABLE 3. d(a; n, k)

a ‘
1 1
1 2+a 1
1 4+q 4-+q 1
1 6+a 10+3a 6+a 1
1 8+a 20+5a 20+5a 8+a 1

An examination of these arrays reveals that, for n>2,
d(a,n k)y=d(O,n, k)+ald(;n—2,k-2)].
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Thus, calculations for any array d(a; n, k) reduce to calculations on d(0; n, k) and d(1; n, k).

Definition 1: For fixed n, we call the sums

(1) D(a;n)= Zn:d(a; n, k), and
k=0

@ D@m= (-¥d(an k)
k=0

the row sums and the alternating row sums, respectively, of the array d(a; n, k).
It is immediate that, for n>2,
a. D(a;n)=D(0;n)+a[D(1;n—-2)], and
b. D*(a;n)=D*(0;n)+(-a)[D*(1;n-2)].

Theorem 1: The sequences {D(1;n)} and {D(0; n)} satisfy:

(@) D(1;0)=1,D(1;1)=2; and, forn>2, D(1;n)=2D(1;n—-1)+ D(1; n—2),
nodd, n>0,

b

D", n=2mm=0,

(b) D*(,n)= {

(¢) D(0;0)=0;D(0;1)=2; and, forn=1, D(0;n) =2D(0;n—1)+ D(0; n—2); and
(d) Forn>0,D*(0;n)=0.
Proof of (@): The proofis by induction. Obviously,
D(1;,0)=1; D(1;1)=2; and D(1;2) = 2D(1; 1)+ D(1; 0).
Assume the proposition is true for 2 <n <m. For n=m,

D(1;m)= Zd(l; mk)=) {d,m-2,k-)+d(,m-1,k-1)+d(1;m-1,k)}
=0

k=0
=Y d(L,m-2,k-1)+Y {d(,m-1,k-1)+d(l;m-1,k)}.
k=0 k=0

The first summation is D(1;m—2). The second summation is

{d;m-1,-1)+d(I;m-1,0)} +{d(l;m-1,0)+d(];m—-1,1)}
+{d(;m-1,1)+d(;m-1,2)}+--+{d(l;m—-1,m-2)
+d(Lm-1,m-D)}+{d(,m-1,m-1)+d(1,m—1, m)}.

Recall that d(1; m—1,—-1) =d(1;m—1,m) =0. Regrouping, the summation becomes:

2d(,m-1,0)+2d(,m-1, ) +--+2d(, m—1,m-2)
+2d(1,;m—-1,m-1)=2D(1;m—1).

Thus, D(1, m) =2D(1; m—-1)+ D(1; m-2).
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The proofs of (b), (c), and (d) are similar. O

The recursions (a) and (c) identify the sequences {D(1; n)} and {D(0;n)} as Pell sequences
[2]. The initial terms of the D(1; n) sequences are: 1, 2, 5, 12, 29, 70, 169, ... . This sequence is
number 552 in Sloane [6]. The D(0; n) sequence starts: 0, 2, 4, 10, 24, 58, ... . The terms are all
even. Dividing by 2 yields: 0, 1, 2, 5, 12, 29, 70, 169, ..., which is again Sloane's sequence 552.

Given Definition 1 and Theorem 1, a simple calculation yields
Corollary 1: The sequences {D(a;n)} and {D*(a; n)} satisfy:

(@) D(a;0y=a; D(a;1)=2;, D(a;n)=2D(a,n-1)+D(a;n-2), n>2.

0, n odd,
a(-1)", n=2m.

® D' n>={

Definition 2: Sums of the form
(1) d(a;n)=d(a;n 0)+d(a;n—-1,1)+d(a,n—2,2)+---, and
(2) I (a;n)=d(a;n,0)—d(a;n-1,)+d(a;n-2,2)—d(a;n—3,3)+---, will be called
diagonal sums and alternating diagonal sums, respectively, for the array d(a; n, k).
Theorem 2: The diagonal sums d(1; n) and d(0; n) satisfy:
@ Jd1,0)=0L; D=1 d(1,2)=2;
and I(L;n)=d(1;n—-1)+d(1;n—-2)+d(L;n-3); n=3;
(b) 0(0,0)=0; d(0;1)=1; I(0;2)=2;
and d(0; n) = H0; n—1)+J(0; n—2)+ A0; n—3); n=3.

Proof: (a) Provedin[1] and [8]; (b) Direct calculation. O

The initial terms of the d(1; n) sequence are: 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, ... .
This is Sloane's sequence 406 [6]. This sequence appeared in [1], [4], and [7], where it is called
the Tribonacci sequence. The terms of d(0; n) are: 0, 1, 2, 3, 6, 11, 20, 37, ...; Sloane's sequence
296. Both sequences have a three-term recursion; i.e., for both sequences, the recursion is of the
form s(n) = s(n—1)+s(n—2)+s(n—-3),n>3. The difference between the two sequences reqults
from different initial terms. Sequences with a three-term recurrence have been studied previously,

e.g., [4], [7]. The recursion relations for both J(0; n) and d(1; #) can be written in matrix form
[71.
Theorem 3: The alternating diagonal sums d*(1; ) and 8*(0; n) satisfy the relations:
(@) 2°(1,0)=0"(; ) =1, 2*°(1;2)=0; and
*(Ln)=0"(Ln-1)-9"(,n-2)-9"(L,n-3), n=3.
(b) 0%(0,0)=0; 9°(0;1) =1, 9*(0,2) =0; and
2*(0;n)=9"(0,n-1)-9"(0;n—2)- 0" (O;n-3), n=3.
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Corollary 2: The diagonal sums d(a; n, k) satisfy

(@ d(a;0)=a; da;1)=1; d(a;2)=2;

(®) d(a;n)=d(a;n—1)+d(a,n-2)+d(a;n-3);, n>3.
The alternating diagonal sums J*(a; n) satisfy

(9 I(a0)=a, d(a)=1; d(a;2)=0;

(@ J(a;n)=(a;n-1)-d(a;n-2)~3(a;n-3); n>3.

2. THE ASSOCIATED MATRICES

Rotate the array d(1; 7, k) counterclockwise so that the diagonals become rows and columns
to produce the following infinite matrix:

11 1

1 3 5 7 9

1 513 25 41
M=

1 7 25 63 129

1 9 41 129 321

The recursion relations for the triangle translate to the following relations for the terms m, ; of the
matrix:

a. m ;=m; =1, foral i, j, and
b.m=m ; +m_  +m_ ;1> j>1
Let M, be the (1 x n)-submatrix whose rows and columns are the first » rows and » columns of

M, and | M, | the corresponding determinant.

Theorem 4: Forn>1, |M,|= pn(n=1/2

Proof: By induction. For n =1, the result is imnmediate.
For k > 1, the matrix can be changed by elementary row and column operations so that, in

block form,
1 0
Mk =
[O 2M, k_l]

The rest follows. O
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I_ May 10, 1993
D

ear Editor: 1

May I inform you that I have just read with interest the paper "On Extended Generalized Stirling Pairs"
by A. G. Kyriakoussis, which appeared in The Fibonacci Quarterly 31.1 (1993):44-52. 1 wish to
mention that Kyriakoussis' “EGSP" ("extended generalized Stirling pair") is actually a particular case
included in the second class of extended "GSN" pairs considered in my paper "Theory and Application
of Generalized Stirling Number Pairs," J. Math. Res. and Exposition 9 (1989):211-20. His first char-
acterization theorem for "EGSP" is a special case of my Theorem 6 (loc. cit.). In fact, a basic result
corresponding with his case appeared much earlier in the paper by J. L. Fields & M. E. H. Ismail,
entitled "Polynomial Expansions," Math. Comp. 29 (1975):894-902.

Thank you for your attention.
Yours sincerely,

L. C. Hsu
Department of Applied Mathematics

University of Manitoba
" Winnipeg, Manitoba, Canada R3T 2N2
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