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[x, >>,...,*] = * + 
y+. 

+-

be a simple continued fraction. In the representation of an element of Q\Z as a simple continued 
fraction, we normalize by z > 2. A "unit fraction" ^ = [0, a] for a > 2 is a very short, simple con-
tinued fraction. One may ask if the sum, difference of two unit fractions (with relatively prime 
denominators) can have arbitrarily many terms in its simple continued fraction. We use the 
Fibonacci numbers to show that the answer is "yes." 

Letting 4-+ 4 - = [°>^ - 1 , P J for ft > 2, we find pn -»0 - I±VI = 
K, 

[1, 1, 1, ...] as n-^co. 

Letting ~ \~ = [0, Fn,on] for n > 1, we find that an —» 1 + 0 as /? —> oo. 
" Fn+\ 

The rates of convergence can easily be estimated. For this, instead of using ^±-y, it is better to 
a b 

use 
1 1 
a b +a 

0,a,-
a 

and 1 - + -
1 

a b2+a2-a 
0 ,a - l , l , - (1) 

where 2<a<b. Starting with -^ = 2 = [2] and y- = f = [1,2], it is easy to show by induction that 

Lemma: For n > 4, we have 

n+\ = [1,...,1,2] for n>\. 
n-l 

F2 
rn+\ _ 
F2 

2,!,. . . ,! , 3, »- l 

H-3 
F. n-2 

(2) 

(3) 

Proof: Subtracting 2 from both sides of (3) gives, equivalently, 

F2 

Ai+1 *rn 

• = [!,...,!, B where B = 
n-3 

**n-\ 

'F n-2 

But 
[l,...,\,B = BF"-2+F"~:i 

n-3 
BFn_3+F„_4 
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Multiplying the right-hand side by ^ and substituting for B, the numerator turns out to be F2 
rn-\ » 

and the denominator is F2
+l - 2F2, as it should be. 

Letting a = Fn9b = Fn+1, we have (a,b2 +a) = \ and (a,b2 + a2 -a) = 1. Using (3), (2), and 
(1), we have 

1 =[0,Fn,2,1,..., 1,3,1,..., 1,2] for/?>3 (4) 
W-3 77-4 

and 

F« F^+Fn 

1 
- + -

1 
F F,+F-F 

= [0 ,^-1 ,1 ,2 ,1 , . . . , 1,3,!,...,!,2] for n>3 . (5) 

For any value of n > 4, (4) has 2n-2 terms and (5) has 2n - 1 terms. Instead of (1), we could 
use [Dr. Gottsch, private communication] 

1 1 
b b2+b + a2 0,6,1, and — + 1 

b 2b2-b + a2 0 ,6 - l ,U , -

This means one additional term 1 each. Letting a = Fn,b = Fn+l, we have (b, b2 +6-ha2) = 1 and 

(b, 2b2 -b + a2) = l. In the analogues of (4) and (5), we also have one additional term 1 each, 
namely, 

1 1 .2 r, .-[0,FW+1,1,2,!,. . . ,!, 3,! , . . . ,! , 2] for n>3 
Fn+l Fn+1+Fn+1+Fn n-3 n-4 

and 

T—+—r2 =T = [ 0 , ^ - 1 , 1 , 1 , 2 , 1 , . . . , 1,3,1,...,1,2] for «>3. 
w+l ^ «+l -1 «+l "•" 2 n n-3 n-4 

This proves 

Theorem: For every integer m > 5, resp. w > 6, there exist integers bm>am>\ with (Z>w, aw) = 
1, resp. <iw > cm > 1 with (rfw, cm) = 1, such that the simple continued fraction of -~-y~, resp. 
7-+ 7-, has exactly w terms. 

By 2" +3*, i + i , i+7"> i + i"' Theorem 1 holds for m>\ mdm>2. We have 

0 w = : ^ - = [!,...,!] for /?>0 
F„ n+l w+1 

without normalization. For every real Ji between (j)n_l and 0W, we have 

/J = [l,...,l,...] for^>0. (6) 

We also have 
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Trivially, we observe that every real ju with 

0 < £ < 0 + f-2"-2 (7) 
or with 

<i>-<t>-2n-2<n«i> (8) 
satisfies (6). 

For primes/?, q, let q>p2+p, [i-^j-. Then we have /1>1, ~ j = [09p9/x]. M = M 
should satisfy (7), which means (pp2 +p<q <<f>p2 +p + (j)~2n~2p2. For x> x0, there exist primes g 
with x < q < x + x2/3, by Hoheisel (see [1]) and others. We use this with x = (f)p2 + p and choose 
p > x0 so that 

<r2"-y^(#>2+/>)2/3; 
by §2p2 > <j)p2 +p, the choice p > x0 + 03w+5 is sufficient. By the "Bertrand postulate" (and espe-

cially by Hoheisel), p < 2(x0 +$3w+5) can be satisfied. This proves 

3 V 3 — - — = [0,/>„,i,..-,i,...]. (9) 
CeU>{ n>0 Pn,qneP P„ ?„ ^ — ' 

pn<qn<C" 

For primes/?, g, let q> p2 - /? , A = p+q
 2. Then we have A>1, ~ + - = [0,/7-l, A]. ju = A 

should satisfy (8), which means (after rewriting) 

fp"-p<q<^p"-p+(j)-^-\p+q-p"y (io) 

Since p + q-p2 >p + (<p2p2 ~p)~p2 - #>2, the condition §2p2 -p<q<(j)2p2 -p + §~2np2 is 
sufficient for (10). As above, we apply Hoheisel. This proves 

3 V 3 — + - = [0,^-1,1,...,i,...]. (ii) 
C e i , ! n>0 Pn,qneP Pn <ln "~^ ' 

Pn<qn<cn 

In (9) and in (11), we have qn> Fn. 

On examining the argument, we see that p and q in (9) and also in (11) can be taken from 
arbitrary sets czN which satisfy conditions of types Bertrand and Hoheisel, respectively. 
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